沉积压力对在镍铁合金上生长的 W 薄膜自旋霍尔角的影响

IF 1.3 4区 物理与天体物理 Q4 PHYSICS, APPLIED
Spin Pub Date : 2024-02-15 DOI:10.1142/s2010324723400271
K. Sriram, Yaswanth Sai Pappu, M. S. Devapriya, Jhantu Pradhan, Arabinda Haldar, Chandrasekhar Murapaka
{"title":"沉积压力对在镍铁合金上生长的 W 薄膜自旋霍尔角的影响","authors":"K. Sriram, Yaswanth Sai Pappu, M. S. Devapriya, Jhantu Pradhan, Arabinda Haldar, Chandrasekhar Murapaka","doi":"10.1142/s2010324723400271","DOIUrl":null,"url":null,"abstract":"<p>Spin-to-charge conversion and vice versa due to spin-orbit coupling in ferromagnet-heavy metal heterostructure is of paramount interest for developing energy-efficient spintronic devices. Here, we have systematically investigated the effect of Ar deposition pressure (<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">Ar</mtext></mstyle></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> on the tungsten (<i>W</i>) crystalline phase and extracted spin-dependent transport parameters. X-ray diffraction results show that 10<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>nm-thick <i>W</i> films exhibit a structural phase transition from a mixed phase of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-<i>W</i> to a single phase of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span>-<i>W</i> as a function of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">Ar</mtext></mstyle></mrow></msub></math></span><span></span>. The observed phase transition is due to a decrease in adatom’s energy and surface mobility. Interestingly, only the <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-<i>W</i> phase is found to stabilize when <i>W</i> sputtered on a seed Ni<span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mn>8</mn><mn>0</mn></mrow></msub></math></span><span></span>Fe<span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mn>2</mn><mn>0</mn></mrow></msub></math></span><span></span> (Permalloy or Py) film. The growth of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-<i>W</i> on the seed Py layer could be due to the strain that facilitates the mixed phase. <i>W</i> deposited on the Py layer is shown to be dependent on <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">Ar</mtext></mstyle></mrow></msub></math></span><span></span>, in which the <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span>-<i>W</i> relative phase fraction is relative. A ferromagnetic resonance (FMR)-based spin pumping method was employed for spin current injection. The FMR linewidth (<span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Δ</mi><mi>H</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is enhanced for Py/<i>W</i> compared to the bare Py layer due to the spin current transport across the interface. The spin-mixing conductance (<span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>g</mi></mrow><mrow><mi>↑</mi><mi>↓</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> is found to be a function of the relative phase fraction of <i>W</i>. The extracted <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>g</mi></mrow><mrow><mi>↑</mi><mi>↓</mi></mrow></msub></math></span><span></span> is <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mn>4</mn><mo>.</mo><mn>9</mn><mn>0</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mn>8</mn></mrow></msup></math></span><span></span><span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>m<span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span><span></span> for <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">Ar</mtext></mstyle></mrow></msub><mo>=</mo><mn>5</mn></math></span><span></span><span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>mTorr and <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><mn>4</mn><mo>.</mo><mn>0</mn><mn>5</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mn>8</mn></mrow></msup></math></span><span></span><span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>m<span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span><span></span> for <span><math altimg=\"eq-00023.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">Ar</mtext></mstyle></mrow></msub><mo>=</mo><mn>1</mn><mn>0</mn></math></span><span></span><span><math altimg=\"eq-00024.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>mTorr. From the inverse spin Hall effect (ISHE) measurements, the effective spin Hall angle (<span><math altimg=\"eq-00025.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>θ</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">SH</mtext></mstyle></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> is estimated to be <span><math altimg=\"eq-00026.gif\" display=\"inline\" overflow=\"scroll\"><mo>−</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>7</mn></math></span><span></span> for <span><math altimg=\"eq-00027.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span>-<i>W</i> rich mixed phase of <span><math altimg=\"eq-00028.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-<i>W</i>, whereas it is <span><math altimg=\"eq-00029.gif\" display=\"inline\" overflow=\"scroll\"><mo>−</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span> for <span><math altimg=\"eq-00030.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span>-<i>W</i> rich <span><math altimg=\"eq-00031.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-<i>W</i>. Our systematic study demonstrates the relatively large effective spin Hall angle via low-longitudinal resistivity by controlling the relative phase fraction of <i>W</i> and helps in developing energy-efficient spintronic devices.</p>","PeriodicalId":54319,"journal":{"name":"Spin","volume":"11 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deposition Pressure Dependence on Spin Hall Angle of W Thin Films Grown on NiFe\",\"authors\":\"K. Sriram, Yaswanth Sai Pappu, M. S. Devapriya, Jhantu Pradhan, Arabinda Haldar, Chandrasekhar Murapaka\",\"doi\":\"10.1142/s2010324723400271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spin-to-charge conversion and vice versa due to spin-orbit coupling in ferromagnet-heavy metal heterostructure is of paramount interest for developing energy-efficient spintronic devices. Here, we have systematically investigated the effect of Ar deposition pressure (<span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>P</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Ar</mtext></mstyle></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> on the tungsten (<i>W</i>) crystalline phase and extracted spin-dependent transport parameters. X-ray diffraction results show that 10<span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>nm-thick <i>W</i> films exhibit a structural phase transition from a mixed phase of <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-<i>W</i> to a single phase of <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>β</mi></math></span><span></span>-<i>W</i> as a function of <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>P</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Ar</mtext></mstyle></mrow></msub></math></span><span></span>. The observed phase transition is due to a decrease in adatom’s energy and surface mobility. Interestingly, only the <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-<i>W</i> phase is found to stabilize when <i>W</i> sputtered on a seed Ni<span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow></mrow><mrow><mn>8</mn><mn>0</mn></mrow></msub></math></span><span></span>Fe<span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow></mrow><mrow><mn>2</mn><mn>0</mn></mrow></msub></math></span><span></span> (Permalloy or Py) film. The growth of <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-<i>W</i> on the seed Py layer could be due to the strain that facilitates the mixed phase. <i>W</i> deposited on the Py layer is shown to be dependent on <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>P</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Ar</mtext></mstyle></mrow></msub></math></span><span></span>, in which the <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>β</mi></math></span><span></span>-<i>W</i> relative phase fraction is relative. A ferromagnetic resonance (FMR)-based spin pumping method was employed for spin current injection. The FMR linewidth (<span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Δ</mi><mi>H</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is enhanced for Py/<i>W</i> compared to the bare Py layer due to the spin current transport across the interface. The spin-mixing conductance (<span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>g</mi></mrow><mrow><mi>↑</mi><mi>↓</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is found to be a function of the relative phase fraction of <i>W</i>. The extracted <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>g</mi></mrow><mrow><mi>↑</mi><mi>↓</mi></mrow></msub></math></span><span></span> is <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>4</mn><mo>.</mo><mn>9</mn><mn>0</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mn>8</mn></mrow></msup></math></span><span></span><span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>m<span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span><span></span> for <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>P</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Ar</mtext></mstyle></mrow></msub><mo>=</mo><mn>5</mn></math></span><span></span><span><math altimg=\\\"eq-00019.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>mTorr and <span><math altimg=\\\"eq-00020.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>4</mn><mo>.</mo><mn>0</mn><mn>5</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mn>8</mn></mrow></msup></math></span><span></span><span><math altimg=\\\"eq-00021.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>m<span><math altimg=\\\"eq-00022.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span><span></span> for <span><math altimg=\\\"eq-00023.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>P</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Ar</mtext></mstyle></mrow></msub><mo>=</mo><mn>1</mn><mn>0</mn></math></span><span></span><span><math altimg=\\\"eq-00024.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>mTorr. From the inverse spin Hall effect (ISHE) measurements, the effective spin Hall angle (<span><math altimg=\\\"eq-00025.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>θ</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">SH</mtext></mstyle></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is estimated to be <span><math altimg=\\\"eq-00026.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>−</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>7</mn></math></span><span></span> for <span><math altimg=\\\"eq-00027.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span>-<i>W</i> rich mixed phase of <span><math altimg=\\\"eq-00028.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-<i>W</i>, whereas it is <span><math altimg=\\\"eq-00029.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>−</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span> for <span><math altimg=\\\"eq-00030.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>β</mi></math></span><span></span>-<i>W</i> rich <span><math altimg=\\\"eq-00031.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-<i>W</i>. Our systematic study demonstrates the relatively large effective spin Hall angle via low-longitudinal resistivity by controlling the relative phase fraction of <i>W</i> and helps in developing energy-efficient spintronic devices.</p>\",\"PeriodicalId\":54319,\"journal\":{\"name\":\"Spin\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spin\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010324723400271\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spin","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s2010324723400271","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

铁磁体-重金属异质结构中的自旋-轨道耦合导致的自旋-电荷转换以及自旋-电荷转换导致的自旋-轨道耦合是开发高能效自旋电子器件的关键所在。在此,我们系统地研究了氩沉积压力(PAr)对钨(W)晶相的影响,并提取了自旋相关输运参数。X 射线衍射结果表明,随着 PAr 的变化,10 纳米厚的 W 薄膜呈现出从 (α+β)-W 混合相到 β-W 单相的结构相变。观察到的相变是由于金刚原子能量和表面迁移率的降低。有趣的是,当 W 溅射到种子 Ni80Fe20(Permalloy 或 Py)薄膜上时,发现只有 (α+β)-W 相稳定下来。(α+β)-W 在种子 Py 层上的生长可能是由于应变促进了混合相的形成。在 Py 层上沉积的 W 取决于 PAr,其中 β-W 的相对相分数是相对的。自旋电流注入采用了基于铁磁共振(FMR)的自旋泵方法。由于自旋电流跨界面传输,Py/W 的 FMR 线宽(ΔH)比裸 Py 层更宽。在 PAr=5mTorr 和 PAr=10mTorr 条件下,提取的 g↑↓ 分别为 4.90×1018m-2 和 4.05×1018m-2。根据反自旋霍尔效应(ISHE)的测量结果,富含α-W 的 (α+β)-W 混合相的有效自旋霍尔角((θSH))估计为-0.17,而富含β-W 的 (α+β)-W 混合相的有效自旋霍尔角((θSH))估计为-0.10。我们的系统研究表明,通过控制 W 的相对相位分数,可以通过低纵向电阻率获得相对较大的有效自旋霍尔角,这有助于开发高能效的自旋电子器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deposition Pressure Dependence on Spin Hall Angle of W Thin Films Grown on NiFe

Spin-to-charge conversion and vice versa due to spin-orbit coupling in ferromagnet-heavy metal heterostructure is of paramount interest for developing energy-efficient spintronic devices. Here, we have systematically investigated the effect of Ar deposition pressure (PAr) on the tungsten (W) crystalline phase and extracted spin-dependent transport parameters. X-ray diffraction results show that 10nm-thick W films exhibit a structural phase transition from a mixed phase of (α+β)-W to a single phase of β-W as a function of PAr. The observed phase transition is due to a decrease in adatom’s energy and surface mobility. Interestingly, only the (α+β)-W phase is found to stabilize when W sputtered on a seed Ni80Fe20 (Permalloy or Py) film. The growth of (α+β)-W on the seed Py layer could be due to the strain that facilitates the mixed phase. W deposited on the Py layer is shown to be dependent on PAr, in which the β-W relative phase fraction is relative. A ferromagnetic resonance (FMR)-based spin pumping method was employed for spin current injection. The FMR linewidth (ΔH) is enhanced for Py/W compared to the bare Py layer due to the spin current transport across the interface. The spin-mixing conductance (g) is found to be a function of the relative phase fraction of W. The extracted g is 4.90×1018m2 for PAr=5mTorr and 4.05×1018m2 for PAr=10mTorr. From the inverse spin Hall effect (ISHE) measurements, the effective spin Hall angle ((θSH) is estimated to be 0.17 for α-W rich mixed phase of (α+β)-W, whereas it is 0.10 for β-W rich (α+β)-W. Our systematic study demonstrates the relatively large effective spin Hall angle via low-longitudinal resistivity by controlling the relative phase fraction of W and helps in developing energy-efficient spintronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spin
Spin Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
2.10
自引率
11.10%
发文量
34
期刊介绍: Spin electronics encompasses a multidisciplinary research effort involving magnetism, semiconductor electronics, materials science, chemistry and biology. SPIN aims to provide a forum for the presentation of research and review articles of interest to all researchers in the field. The scope of the journal includes (but is not necessarily limited to) the following topics: *Materials: -Metals -Heusler compounds -Complex oxides: antiferromagnetic, ferromagnetic -Dilute magnetic semiconductors -Dilute magnetic oxides -High performance and emerging magnetic materials *Semiconductor electronics *Nanodevices: -Fabrication -Characterization *Spin injection *Spin transport *Spin transfer torque *Spin torque oscillators *Electrical control of magnetic properties *Organic spintronics *Optical phenomena and optoelectronic spin manipulation *Applications and devices: -Novel memories and logic devices -Lab-on-a-chip -Others *Fundamental and interdisciplinary studies: -Spin in low dimensional system -Spin in medical sciences -Spin in other fields -Computational materials discovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信