{"title":"混合燃料燃烧合成 Y3Al5O12:Ce,Nd 磷化物的合成、表征和光学特性","authors":"M. Upasani","doi":"10.3103/S1061386224010102","DOIUrl":null,"url":null,"abstract":"<p>The study focuses on the synthesis and energy transfer mechanism between the cerium and neodymium co-doped YAG phosphors. YAG:Ce,Nd powders were synthesized using a mixed fuel combustion method. The effect of the synthesis procedure on the crystallinity and luminescence spectra were examined. The influence of Si<sup>4+</sup> doping in YAG:Ce,Nd phosphors were also studied.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 1","pages":"33 - 38"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, Characterization, and Optical Properties of Y3Al5O12:Ce,Nd Phosphor by Mixed Fuel Combustion Synthesis\",\"authors\":\"M. Upasani\",\"doi\":\"10.3103/S1061386224010102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study focuses on the synthesis and energy transfer mechanism between the cerium and neodymium co-doped YAG phosphors. YAG:Ce,Nd powders were synthesized using a mixed fuel combustion method. The effect of the synthesis procedure on the crystallinity and luminescence spectra were examined. The influence of Si<sup>4+</sup> doping in YAG:Ce,Nd phosphors were also studied.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"33 1\",\"pages\":\"33 - 38\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1061386224010102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386224010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis, Characterization, and Optical Properties of Y3Al5O12:Ce,Nd Phosphor by Mixed Fuel Combustion Synthesis
The study focuses on the synthesis and energy transfer mechanism between the cerium and neodymium co-doped YAG phosphors. YAG:Ce,Nd powders were synthesized using a mixed fuel combustion method. The effect of the synthesis procedure on the crystallinity and luminescence spectra were examined. The influence of Si4+ doping in YAG:Ce,Nd phosphors were also studied.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.