{"title":"XGCN:大规模图神经网络推荐库","authors":"Xiran Song, Hong Huang, Jianxun Lian, Hai Jin","doi":"10.1007/s11704-024-3803-z","DOIUrl":null,"url":null,"abstract":"<p>This work introduces a GNN library, XGCN, which is designed to assist users in rapidly developing and running large-scale GNN recommendation models. We offer highly scalable GNN reproductions and include a recently proposed GNN model: xGCN. Experimental evaluations on datasets of varying scales demonstrate the superior scalability of our XGCN library.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"25 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XGCN: a library for large-scale graph neural network recommendations\",\"authors\":\"Xiran Song, Hong Huang, Jianxun Lian, Hai Jin\",\"doi\":\"10.1007/s11704-024-3803-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work introduces a GNN library, XGCN, which is designed to assist users in rapidly developing and running large-scale GNN recommendation models. We offer highly scalable GNN reproductions and include a recently proposed GNN model: xGCN. Experimental evaluations on datasets of varying scales demonstrate the superior scalability of our XGCN library.</p>\",\"PeriodicalId\":12640,\"journal\":{\"name\":\"Frontiers of Computer Science\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11704-024-3803-z\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-024-3803-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
XGCN: a library for large-scale graph neural network recommendations
This work introduces a GNN library, XGCN, which is designed to assist users in rapidly developing and running large-scale GNN recommendation models. We offer highly scalable GNN reproductions and include a recently proposed GNN model: xGCN. Experimental evaluations on datasets of varying scales demonstrate the superior scalability of our XGCN library.
期刊介绍:
Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.