Yuqi Li, Tao Meng, Zhixiong He, Haiyan Liu, Keqin Li
{"title":"基于桁架的群体搜索的偏置边缘增强法","authors":"Yuqi Li, Tao Meng, Zhixiong He, Haiyan Liu, Keqin Li","doi":"10.1007/s11704-024-2604-8","DOIUrl":null,"url":null,"abstract":"<p>Most truss-based community search methods are usually confronted with the fragmentation issue. We propose a Biased edge Enhancement method for Truss-based Community Search (BETCS) to address the issue. This paper mainly solves the fragmentation problem in truss community query through data enhancement. In future work, we will consider applying the methods in the text to directed graphs or dynamic graphs.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"16 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A biased edge enhancement method for truss-based community search\",\"authors\":\"Yuqi Li, Tao Meng, Zhixiong He, Haiyan Liu, Keqin Li\",\"doi\":\"10.1007/s11704-024-2604-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most truss-based community search methods are usually confronted with the fragmentation issue. We propose a Biased edge Enhancement method for Truss-based Community Search (BETCS) to address the issue. This paper mainly solves the fragmentation problem in truss community query through data enhancement. In future work, we will consider applying the methods in the text to directed graphs or dynamic graphs.</p>\",\"PeriodicalId\":12640,\"journal\":{\"name\":\"Frontiers of Computer Science\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11704-024-2604-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-024-2604-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A biased edge enhancement method for truss-based community search
Most truss-based community search methods are usually confronted with the fragmentation issue. We propose a Biased edge Enhancement method for Truss-based Community Search (BETCS) to address the issue. This paper mainly solves the fragmentation problem in truss community query through data enhancement. In future work, we will consider applying the methods in the text to directed graphs or dynamic graphs.
期刊介绍:
Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.