基于无线视觉的数字媒体定点 DSP 处理器,取决于自然灾害机器人

IF 1.9 4区 计算机科学 Q3 ROBOTICS
Robotica Pub Date : 2024-03-15 DOI:10.1017/s0263574724000225
S. Mary Joans, N. Gomathi, P. Ponsudha
{"title":"基于无线视觉的数字媒体定点 DSP 处理器,取决于自然灾害机器人","authors":"S. Mary Joans, N. Gomathi, P. Ponsudha","doi":"10.1017/s0263574724000225","DOIUrl":null,"url":null,"abstract":"Natural calamities are affecting many parts of the world. Natural disasters, terrorist attacks, earthquakes, wildfires, floods and all unpredicted phenomena. Disasters cause emergency conditions, so imperative to coordinate the prompt delivery of essential services to the sufferers. Often, disasters lead many people to perish by becoming trapped inside, but many more also perish as a result of individuals receiving rescue either too late or not at all. The implementation and design of a Receiver module utilizing Davinci code processor DVM6437, Wireless camera receiver, Zigbee Transceiver and Global Positioning System (GPS) is proposed in this manuscript for Wireless Vision-based Semi-Autonomous rescue robots that are employed in rough terrain. The receiver side’s Zigbee transceiver module eliminates the limitations of tele-operating rescue robots by enabling the control station to receive GPS data signals and aids in robot management by sending control signals wirelessly. Half and full-duplex communication are supported by the Davinci processor DVM6437, a digital media fixed-point DSP processor that relies on Very Long Instruction Words. It includes an extensive instruction set that is ideal for real-time salvage operations. DVM processor is coded utilizing MATLAB Simulink. MATLAB codes and Simulink blocks are employed under Embedded IDE link.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wireless vision-based digital media fixed-point DSP processor depending robots for natural calamities\",\"authors\":\"S. Mary Joans, N. Gomathi, P. Ponsudha\",\"doi\":\"10.1017/s0263574724000225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural calamities are affecting many parts of the world. Natural disasters, terrorist attacks, earthquakes, wildfires, floods and all unpredicted phenomena. Disasters cause emergency conditions, so imperative to coordinate the prompt delivery of essential services to the sufferers. Often, disasters lead many people to perish by becoming trapped inside, but many more also perish as a result of individuals receiving rescue either too late or not at all. The implementation and design of a Receiver module utilizing Davinci code processor DVM6437, Wireless camera receiver, Zigbee Transceiver and Global Positioning System (GPS) is proposed in this manuscript for Wireless Vision-based Semi-Autonomous rescue robots that are employed in rough terrain. The receiver side’s Zigbee transceiver module eliminates the limitations of tele-operating rescue robots by enabling the control station to receive GPS data signals and aids in robot management by sending control signals wirelessly. Half and full-duplex communication are supported by the Davinci processor DVM6437, a digital media fixed-point DSP processor that relies on Very Long Instruction Words. It includes an extensive instruction set that is ideal for real-time salvage operations. DVM processor is coded utilizing MATLAB Simulink. MATLAB codes and Simulink blocks are employed under Embedded IDE link.\",\"PeriodicalId\":49593,\"journal\":{\"name\":\"Robotica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0263574724000225\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000225","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

自然灾害正在影响世界许多地区。自然灾害、恐怖袭击、地震、野火、洪水和所有不可预知的现象。灾害会造成紧急状况,因此必须进行协调,迅速为灾民提供必要的服务。灾害往往导致许多人被困在屋内而丧生,但也有更多的人因接受救援太晚或根本没有得到救援而丧生。本手稿提出了利用 Davinci 代码处理器 DVM6437、无线摄像头接收器、Zigbee 收发器和全球定位系统 (GPS) 的接收器模块的实现和设计,用于在崎岖地形中使用的基于无线视觉的半自主救援机器人。接收端的 Zigbee 收发器模块使控制站能够接收 GPS 数据信号,从而消除了远程操作救援机器人的局限性,并通过无线方式发送控制信号来协助机器人管理。Davinci 处理器 DVM6437 支持半双工和全双工通信,它是一种数字媒体定点 DSP 处理器,依赖于超长指令字。它包含丰富的指令集,非常适合实时抢救操作。DVM 处理器利用 MATLAB Simulink 进行编码。MATLAB 代码和 Simulink 块是在嵌入式集成开发环境链接下使用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wireless vision-based digital media fixed-point DSP processor depending robots for natural calamities
Natural calamities are affecting many parts of the world. Natural disasters, terrorist attacks, earthquakes, wildfires, floods and all unpredicted phenomena. Disasters cause emergency conditions, so imperative to coordinate the prompt delivery of essential services to the sufferers. Often, disasters lead many people to perish by becoming trapped inside, but many more also perish as a result of individuals receiving rescue either too late or not at all. The implementation and design of a Receiver module utilizing Davinci code processor DVM6437, Wireless camera receiver, Zigbee Transceiver and Global Positioning System (GPS) is proposed in this manuscript for Wireless Vision-based Semi-Autonomous rescue robots that are employed in rough terrain. The receiver side’s Zigbee transceiver module eliminates the limitations of tele-operating rescue robots by enabling the control station to receive GPS data signals and aids in robot management by sending control signals wirelessly. Half and full-duplex communication are supported by the Davinci processor DVM6437, a digital media fixed-point DSP processor that relies on Very Long Instruction Words. It includes an extensive instruction set that is ideal for real-time salvage operations. DVM processor is coded utilizing MATLAB Simulink. MATLAB codes and Simulink blocks are employed under Embedded IDE link.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotica
Robotica 工程技术-机器人学
CiteScore
4.50
自引率
22.20%
发文量
181
审稿时长
9.9 months
期刊介绍: Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信