{"title":"甲羰基苯酚和苯胺的合成","authors":"Bao-Yin Zhao, Qiong Jia, Yong-Qiang Wang","doi":"10.1038/s41467-024-46576-2","DOIUrl":null,"url":null,"abstract":"<p>Phenols and anilines are of extreme importance for medicinal chemistry and material science. The development of efficient approaches to prepare both compounds has thus long been a vital research topic. The utility of phenols and anilines directly reflects the identity and pattern of substituents on the benzenoid ring. Electrophilic substitutions remain among the most powerful synthetic methods to substituted phenols and anilines, yet in principle achieving <i>ortho</i>- and <i>para</i>-substituted products. Therefore, the selective preparation of <i>meta</i>-substituted phenols and anilines is the most significant challenge. We herein report an efficient copper-catalyzed dehydrogenation strategy to exclusively synthesize <i>meta</i>-carbonyl phenols and anilines from carbonyl substituted cyclohexanes. Mechanistic studies indicate that this transformation undergoes a copper-catalyzed dehydrogenation/allylic hydroxylation or amination/oxidative dehydrogenation/aromatization cascade process.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"65 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of meta-carbonyl phenols and anilines\",\"authors\":\"Bao-Yin Zhao, Qiong Jia, Yong-Qiang Wang\",\"doi\":\"10.1038/s41467-024-46576-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phenols and anilines are of extreme importance for medicinal chemistry and material science. The development of efficient approaches to prepare both compounds has thus long been a vital research topic. The utility of phenols and anilines directly reflects the identity and pattern of substituents on the benzenoid ring. Electrophilic substitutions remain among the most powerful synthetic methods to substituted phenols and anilines, yet in principle achieving <i>ortho</i>- and <i>para</i>-substituted products. Therefore, the selective preparation of <i>meta</i>-substituted phenols and anilines is the most significant challenge. We herein report an efficient copper-catalyzed dehydrogenation strategy to exclusively synthesize <i>meta</i>-carbonyl phenols and anilines from carbonyl substituted cyclohexanes. Mechanistic studies indicate that this transformation undergoes a copper-catalyzed dehydrogenation/allylic hydroxylation or amination/oxidative dehydrogenation/aromatization cascade process.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-46576-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-46576-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Phenols and anilines are of extreme importance for medicinal chemistry and material science. The development of efficient approaches to prepare both compounds has thus long been a vital research topic. The utility of phenols and anilines directly reflects the identity and pattern of substituents on the benzenoid ring. Electrophilic substitutions remain among the most powerful synthetic methods to substituted phenols and anilines, yet in principle achieving ortho- and para-substituted products. Therefore, the selective preparation of meta-substituted phenols and anilines is the most significant challenge. We herein report an efficient copper-catalyzed dehydrogenation strategy to exclusively synthesize meta-carbonyl phenols and anilines from carbonyl substituted cyclohexanes. Mechanistic studies indicate that this transformation undergoes a copper-catalyzed dehydrogenation/allylic hydroxylation or amination/oxidative dehydrogenation/aromatization cascade process.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.