{"title":"蜂巢和辅助沙漏晶格转移结构静态和动态响应中的非线性裁剪证据","authors":"Vivek Gupta , Sondipon Adhikari , Bishakh Bhattacharya","doi":"10.1016/j.mechrescom.2024.104261","DOIUrl":null,"url":null,"abstract":"<div><p>Nature’s morphology and optimal energetic solutions remain the key motivation for designing cellular-based lattice structures. Understanding the nonlinear dynamical behaviors that arise from different lattice topologies of such structures in the metastructure framework is crucial for their successful implementation in various novel designs and technologies related to vibration and shape control. This paper presents a study of the static and dynamic response of auxetic and honeycomb lattices with hourglass or dome-shaped metastructures. The potential tailoring of nonlinearity of such responses through various design parameters that play a vital role in shaping the dynamic properties of such structures is discussed here. The impact of cell design parameters on the resulting macroscopic behavior is assessed using both numerical simulations and experimental studies. The transition from softening to hardening nonlinear dynamic responses is reported with cell topologies ranging from the regular honeycomb to auxetic topologies that are widely used as fundamental cells of cellular materials design. The experimental study is based on the time responses measured to verify the numerical predictions. The experimental system consists of different 3D printed hourglass samples based on the auxetic and honeycomb lattices on which dynamic testing using a laser Doppler vibrometer is performed. The design strategies proposed in this paper can be integrated into a wide range of lattice-based materials for noise and vibration control applications and biomedical devices.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence of nonlinearity tailoring in static and dynamic responses of honeycomb and auxetic hourglass lattice metastructures\",\"authors\":\"Vivek Gupta , Sondipon Adhikari , Bishakh Bhattacharya\",\"doi\":\"10.1016/j.mechrescom.2024.104261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nature’s morphology and optimal energetic solutions remain the key motivation for designing cellular-based lattice structures. Understanding the nonlinear dynamical behaviors that arise from different lattice topologies of such structures in the metastructure framework is crucial for their successful implementation in various novel designs and technologies related to vibration and shape control. This paper presents a study of the static and dynamic response of auxetic and honeycomb lattices with hourglass or dome-shaped metastructures. The potential tailoring of nonlinearity of such responses through various design parameters that play a vital role in shaping the dynamic properties of such structures is discussed here. The impact of cell design parameters on the resulting macroscopic behavior is assessed using both numerical simulations and experimental studies. The transition from softening to hardening nonlinear dynamic responses is reported with cell topologies ranging from the regular honeycomb to auxetic topologies that are widely used as fundamental cells of cellular materials design. The experimental study is based on the time responses measured to verify the numerical predictions. The experimental system consists of different 3D printed hourglass samples based on the auxetic and honeycomb lattices on which dynamic testing using a laser Doppler vibrometer is performed. The design strategies proposed in this paper can be integrated into a wide range of lattice-based materials for noise and vibration control applications and biomedical devices.</p></div>\",\"PeriodicalId\":49846,\"journal\":{\"name\":\"Mechanics Research Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics Research Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093641324000193\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics Research Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093641324000193","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Evidence of nonlinearity tailoring in static and dynamic responses of honeycomb and auxetic hourglass lattice metastructures
Nature’s morphology and optimal energetic solutions remain the key motivation for designing cellular-based lattice structures. Understanding the nonlinear dynamical behaviors that arise from different lattice topologies of such structures in the metastructure framework is crucial for their successful implementation in various novel designs and technologies related to vibration and shape control. This paper presents a study of the static and dynamic response of auxetic and honeycomb lattices with hourglass or dome-shaped metastructures. The potential tailoring of nonlinearity of such responses through various design parameters that play a vital role in shaping the dynamic properties of such structures is discussed here. The impact of cell design parameters on the resulting macroscopic behavior is assessed using both numerical simulations and experimental studies. The transition from softening to hardening nonlinear dynamic responses is reported with cell topologies ranging from the regular honeycomb to auxetic topologies that are widely used as fundamental cells of cellular materials design. The experimental study is based on the time responses measured to verify the numerical predictions. The experimental system consists of different 3D printed hourglass samples based on the auxetic and honeycomb lattices on which dynamic testing using a laser Doppler vibrometer is performed. The design strategies proposed in this paper can be integrated into a wide range of lattice-based materials for noise and vibration control applications and biomedical devices.
期刊介绍:
Mechanics Research Communications publishes, as rapidly as possible, peer-reviewed manuscripts of high standards but restricted length. It aims to provide:
• a fast means of communication
• an exchange of ideas among workers in mechanics
• an effective method of bringing new results quickly to the public
• an informal vehicle for the discussion
• of ideas that may still be in the formative stages
The field of Mechanics will be understood to encompass the behavior of continua, fluids, solids, particles and their mixtures. Submissions must contain a strong, novel contribution to the field of mechanics, and ideally should be focused on current issues in the field involving theoretical, experimental and/or applied research, preferably within the broad expertise encompassed by the Board of Associate Editors. Deviations from these areas should be discussed in advance with the Editor-in-Chief.