Lisheng Kuang , Monica Malvezzi , Marco Ferro , Domenico Prattichizzo , Paolo Robuffo Giordano , Francesco Chinello , Claudio Pacchierotti
{"title":"用于表面和边缘触觉渲染的 4-DoF 可穿戴手部设备","authors":"Lisheng Kuang , Monica Malvezzi , Marco Ferro , Domenico Prattichizzo , Paolo Robuffo Giordano , Francesco Chinello , Claudio Pacchierotti","doi":"10.1016/j.mechatronics.2024.103173","DOIUrl":null,"url":null,"abstract":"<div><p>We present a 4-degrees-of-freedom (4-DoF) wearable haptic device for the palm, able to provide the sensation of interacting with slanted surfaces and edges. It is composed of a static upper body, secured to the back of the hand, and a mobile end-effector, placed in contact with the palm. They are connected by two articulated arms, actuated by four servo motors housed on the upper body and along the arms. The end-effector is a foldable flat surface that can make/break contact with the palm to provide pressure feedback, move sideways to provide skin stretch and tangential motion feedback, and fold to elicit the sensation of interacting with different curvatures. The paper presents the design of the wearable haptic device, together with its mobility, statics, and manipulability, as well as direct, inverse, and differential kinematics. We also present a position control scheme for the device, which is then quantitatively evaluated.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"99 ","pages":"Article 103173"},"PeriodicalIF":3.1000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 4-DoF wearable hand device for haptic rendering of surfaces and edges\",\"authors\":\"Lisheng Kuang , Monica Malvezzi , Marco Ferro , Domenico Prattichizzo , Paolo Robuffo Giordano , Francesco Chinello , Claudio Pacchierotti\",\"doi\":\"10.1016/j.mechatronics.2024.103173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a 4-degrees-of-freedom (4-DoF) wearable haptic device for the palm, able to provide the sensation of interacting with slanted surfaces and edges. It is composed of a static upper body, secured to the back of the hand, and a mobile end-effector, placed in contact with the palm. They are connected by two articulated arms, actuated by four servo motors housed on the upper body and along the arms. The end-effector is a foldable flat surface that can make/break contact with the palm to provide pressure feedback, move sideways to provide skin stretch and tangential motion feedback, and fold to elicit the sensation of interacting with different curvatures. The paper presents the design of the wearable haptic device, together with its mobility, statics, and manipulability, as well as direct, inverse, and differential kinematics. We also present a position control scheme for the device, which is then quantitatively evaluated.</p></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"99 \",\"pages\":\"Article 103173\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957415824000382\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824000382","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A 4-DoF wearable hand device for haptic rendering of surfaces and edges
We present a 4-degrees-of-freedom (4-DoF) wearable haptic device for the palm, able to provide the sensation of interacting with slanted surfaces and edges. It is composed of a static upper body, secured to the back of the hand, and a mobile end-effector, placed in contact with the palm. They are connected by two articulated arms, actuated by four servo motors housed on the upper body and along the arms. The end-effector is a foldable flat surface that can make/break contact with the palm to provide pressure feedback, move sideways to provide skin stretch and tangential motion feedback, and fold to elicit the sensation of interacting with different curvatures. The paper presents the design of the wearable haptic device, together with its mobility, statics, and manipulability, as well as direct, inverse, and differential kinematics. We also present a position control scheme for the device, which is then quantitatively evaluated.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.