{"title":"丁酸盐或丙酸盐诱导濒死牙龈上皮 Ca9-22 细胞释放损伤相关分子模式时,自噬诱导过程中需要产生活性氧。","authors":"Kiwa Miyake, Yoshikazu Mikami, Takayuki Asayama, Taku Toriumi, Keiji Shinozuka, Morio Tonogi, Yoshiyuki Yonehara, Hiromasa Tsuda","doi":"10.2334/josnusd.23-0421","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Bacterial cells in mature dental plaque produce a high concentration of short-chain fatty acids (SCFAs) such as butyrate and propionate. SCFA-treatment on human gingival epithelial Ca9-22 cells induced cell death. However, the exact mechanism underlying cell death remains unclear. In this study, the relationship between reactive oxygen species (ROS) and autophagy induction during SCFA-induced cell death was examined.</p><p><strong>Methods: </strong>Human gingival epithelial Ca9-22 cells were treated with butyrate or propionate to induce cell death and the number of dead cells were measured using SYTOX-green dye. A siRNA for ATG5 and N-acetylcysteine (NAC) were used for autophagy reduction and ROS-scavenging, respectively. Release of damage-associated molecular patterns (DAMPs) such as Sin3A-associated protein 130 (SAP130) and high-mobility group box 1 (HMGB1) were detected using western blot.</p><p><strong>Results: </strong>Reducing autophagy significantly suppressed SCFA-induced Ca9-22 cell death. ROS generation was observed upon SCFA treatment, and scavenging ROS with NAC decreased cell death. NAC also reduced the SCFA-induced increase in microtubule-associated protein 1 light chain 3B (LC3B)-I and LC3B-II, and mitigated the release of DAMPs.</p><p><strong>Conclusion: </strong>The findings suggest that ROS generation is necessary for autophagy, which is required for SCFA-induced cell death and accompanying DAMP release.</p>","PeriodicalId":16646,"journal":{"name":"Journal of oral science","volume":" ","pages":"125-129"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactive oxygen species generation required for autophagy induction during butyrate- or propionate-induced release of damage-associated molecular patterns from dying gingival epithelial Ca9-22 cells.\",\"authors\":\"Kiwa Miyake, Yoshikazu Mikami, Takayuki Asayama, Taku Toriumi, Keiji Shinozuka, Morio Tonogi, Yoshiyuki Yonehara, Hiromasa Tsuda\",\"doi\":\"10.2334/josnusd.23-0421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Bacterial cells in mature dental plaque produce a high concentration of short-chain fatty acids (SCFAs) such as butyrate and propionate. SCFA-treatment on human gingival epithelial Ca9-22 cells induced cell death. However, the exact mechanism underlying cell death remains unclear. In this study, the relationship between reactive oxygen species (ROS) and autophagy induction during SCFA-induced cell death was examined.</p><p><strong>Methods: </strong>Human gingival epithelial Ca9-22 cells were treated with butyrate or propionate to induce cell death and the number of dead cells were measured using SYTOX-green dye. A siRNA for ATG5 and N-acetylcysteine (NAC) were used for autophagy reduction and ROS-scavenging, respectively. Release of damage-associated molecular patterns (DAMPs) such as Sin3A-associated protein 130 (SAP130) and high-mobility group box 1 (HMGB1) were detected using western blot.</p><p><strong>Results: </strong>Reducing autophagy significantly suppressed SCFA-induced Ca9-22 cell death. ROS generation was observed upon SCFA treatment, and scavenging ROS with NAC decreased cell death. NAC also reduced the SCFA-induced increase in microtubule-associated protein 1 light chain 3B (LC3B)-I and LC3B-II, and mitigated the release of DAMPs.</p><p><strong>Conclusion: </strong>The findings suggest that ROS generation is necessary for autophagy, which is required for SCFA-induced cell death and accompanying DAMP release.</p>\",\"PeriodicalId\":16646,\"journal\":{\"name\":\"Journal of oral science\",\"volume\":\" \",\"pages\":\"125-129\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of oral science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2334/josnusd.23-0421\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of oral science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2334/josnusd.23-0421","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Reactive oxygen species generation required for autophagy induction during butyrate- or propionate-induced release of damage-associated molecular patterns from dying gingival epithelial Ca9-22 cells.
Purpose: Bacterial cells in mature dental plaque produce a high concentration of short-chain fatty acids (SCFAs) such as butyrate and propionate. SCFA-treatment on human gingival epithelial Ca9-22 cells induced cell death. However, the exact mechanism underlying cell death remains unclear. In this study, the relationship between reactive oxygen species (ROS) and autophagy induction during SCFA-induced cell death was examined.
Methods: Human gingival epithelial Ca9-22 cells were treated with butyrate or propionate to induce cell death and the number of dead cells were measured using SYTOX-green dye. A siRNA for ATG5 and N-acetylcysteine (NAC) were used for autophagy reduction and ROS-scavenging, respectively. Release of damage-associated molecular patterns (DAMPs) such as Sin3A-associated protein 130 (SAP130) and high-mobility group box 1 (HMGB1) were detected using western blot.
Results: Reducing autophagy significantly suppressed SCFA-induced Ca9-22 cell death. ROS generation was observed upon SCFA treatment, and scavenging ROS with NAC decreased cell death. NAC also reduced the SCFA-induced increase in microtubule-associated protein 1 light chain 3B (LC3B)-I and LC3B-II, and mitigated the release of DAMPs.
Conclusion: The findings suggest that ROS generation is necessary for autophagy, which is required for SCFA-induced cell death and accompanying DAMP release.