{"title":"卵巢刺激对小鼠模型植入前胚胎发育速度的影响","authors":"Mayuko Kurumizaka, Tatsuma Yao, Mikiko Tokoro, Noritaka Fukunaga, Yoshimasa Asada, Kazuo Yamagata","doi":"10.1262/jrd.2023-089","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian stimulation protocols are widely used to collect oocytes in assisted reproductive technologies (ARTs). Although the influence of ovarian stimulation on embryo quality has been described, this issue remains controversial. Here, we analyzed the influence of ovarian stimulation on developmental speed and chromosome segregation using live cell imaging. Female mice at the proestrus stage were separated by the appearance of the vagina as the non-stimulation (-) group, and other mice were administered pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) as the stimulation (+) groups. The cumulus-oocyte complexes from both groups were inseminated with sperm suspensions from the same male mice. Fertilization rates and developmental capacities were examined, and the developmental speed and frequency of chromosome segregation errors were measured by live-cell imaging using a Histone H2B-mCherry probe. The number of fertilized oocytes obtained was 1.4-fold more frequent in the stimulation (+) group. The developmental rate and chromosome stability did not differ between the groups. Image analysis showed that the mean speed of development in the stimulation (+) group was slightly higher than that in the non-stimulation (-) group. This increase in speed seemed to arise from the slight shortening of the 2- and 4-cell stages and third division lengths and consequent synchronization of cleavage timing in each embryo, not from the emergence of an extremely rapidly developing subpopulation of embryos. In conclusion, ovarian stimulation does not necessarily affect embryo quality but rather increases the chances of obtaining high-quality oocytes in mice.</p>","PeriodicalId":16942,"journal":{"name":"Journal of Reproduction and Development","volume":" ","pages":"160-168"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11153123/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of ovarian stimulation on developmental speed of preimplantation embryo in a mouse model.\",\"authors\":\"Mayuko Kurumizaka, Tatsuma Yao, Mikiko Tokoro, Noritaka Fukunaga, Yoshimasa Asada, Kazuo Yamagata\",\"doi\":\"10.1262/jrd.2023-089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ovarian stimulation protocols are widely used to collect oocytes in assisted reproductive technologies (ARTs). Although the influence of ovarian stimulation on embryo quality has been described, this issue remains controversial. Here, we analyzed the influence of ovarian stimulation on developmental speed and chromosome segregation using live cell imaging. Female mice at the proestrus stage were separated by the appearance of the vagina as the non-stimulation (-) group, and other mice were administered pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) as the stimulation (+) groups. The cumulus-oocyte complexes from both groups were inseminated with sperm suspensions from the same male mice. Fertilization rates and developmental capacities were examined, and the developmental speed and frequency of chromosome segregation errors were measured by live-cell imaging using a Histone H2B-mCherry probe. The number of fertilized oocytes obtained was 1.4-fold more frequent in the stimulation (+) group. The developmental rate and chromosome stability did not differ between the groups. Image analysis showed that the mean speed of development in the stimulation (+) group was slightly higher than that in the non-stimulation (-) group. This increase in speed seemed to arise from the slight shortening of the 2- and 4-cell stages and third division lengths and consequent synchronization of cleavage timing in each embryo, not from the emergence of an extremely rapidly developing subpopulation of embryos. In conclusion, ovarian stimulation does not necessarily affect embryo quality but rather increases the chances of obtaining high-quality oocytes in mice.</p>\",\"PeriodicalId\":16942,\"journal\":{\"name\":\"Journal of Reproduction and Development\",\"volume\":\" \",\"pages\":\"160-168\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11153123/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reproduction and Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1262/jrd.2023-089\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reproduction and Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1262/jrd.2023-089","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Effect of ovarian stimulation on developmental speed of preimplantation embryo in a mouse model.
Ovarian stimulation protocols are widely used to collect oocytes in assisted reproductive technologies (ARTs). Although the influence of ovarian stimulation on embryo quality has been described, this issue remains controversial. Here, we analyzed the influence of ovarian stimulation on developmental speed and chromosome segregation using live cell imaging. Female mice at the proestrus stage were separated by the appearance of the vagina as the non-stimulation (-) group, and other mice were administered pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) as the stimulation (+) groups. The cumulus-oocyte complexes from both groups were inseminated with sperm suspensions from the same male mice. Fertilization rates and developmental capacities were examined, and the developmental speed and frequency of chromosome segregation errors were measured by live-cell imaging using a Histone H2B-mCherry probe. The number of fertilized oocytes obtained was 1.4-fold more frequent in the stimulation (+) group. The developmental rate and chromosome stability did not differ between the groups. Image analysis showed that the mean speed of development in the stimulation (+) group was slightly higher than that in the non-stimulation (-) group. This increase in speed seemed to arise from the slight shortening of the 2- and 4-cell stages and third division lengths and consequent synchronization of cleavage timing in each embryo, not from the emergence of an extremely rapidly developing subpopulation of embryos. In conclusion, ovarian stimulation does not necessarily affect embryo quality but rather increases the chances of obtaining high-quality oocytes in mice.
期刊介绍:
Journal of Reproduction and Development (JRD) is the
official journal of the Society for Reproduction and Development,
published bimonthly, and welcomes original articles. JRD
provides free full-text access of all the published articles on
the web. The functions of the journal are managed by Editorial
Board Members, such as the Editor-in-Chief, Co-Editor-inChief, Managing Editors and Editors. All manuscripts are
peer-reviewed critically by two or more reviewers. Acceptance
is based on scientific content and presentation of the materials.
The Editors select reviewers and correspond with authors. Final
decisions about acceptance or rejection of manuscripts are made
by the Editor-in-Chief and Co-Editor-in-Chief.