多能性中信号通路与能量代谢之间的相互影响

IF 2.5 4区 医学 Q3 CELL & TISSUE ENGINEERING
Keun-Tae Kim, Seong-Min Kim, Hyuk-Jin Cha
{"title":"多能性中信号通路与能量代谢之间的相互影响","authors":"Keun-Tae Kim, Seong-Min Kim, Hyuk-Jin Cha","doi":"10.15283/ijsc23173","DOIUrl":null,"url":null,"abstract":"<p><p>The sequential change from totipotency to multipotency occurs during early mammalian embryo development. However, due to the lack of cellular models to recapitulate the distinct potency of stem cells at each stage, their molecular and cellular characteristics remain ambiguous. The establishment of isogenic naïve and primed pluripotent stem cells to represent the pluripotency in the inner cell mass of the pre-implantation blastocyst and in the epiblast from the post-implantation embryo allows the understanding of the distinctive characteristics of two different states of pluripotent stem cells. This review discusses the prominent disparities between naïve and primed pluripotency, including signaling pathways, metabolism, and epigenetic status, ultimately facilitating a comprehensive understanding of their significance during early mammalian embryonic development.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crosstalk between Signaling Pathways and Energy Metabolism in Pluripotency.\",\"authors\":\"Keun-Tae Kim, Seong-Min Kim, Hyuk-Jin Cha\",\"doi\":\"10.15283/ijsc23173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sequential change from totipotency to multipotency occurs during early mammalian embryo development. However, due to the lack of cellular models to recapitulate the distinct potency of stem cells at each stage, their molecular and cellular characteristics remain ambiguous. The establishment of isogenic naïve and primed pluripotent stem cells to represent the pluripotency in the inner cell mass of the pre-implantation blastocyst and in the epiblast from the post-implantation embryo allows the understanding of the distinctive characteristics of two different states of pluripotent stem cells. This review discusses the prominent disparities between naïve and primed pluripotency, including signaling pathways, metabolism, and epigenetic status, ultimately facilitating a comprehensive understanding of their significance during early mammalian embryonic development.</p>\",\"PeriodicalId\":14392,\"journal\":{\"name\":\"International journal of stem cells\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of stem cells\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.15283/ijsc23173\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15283/ijsc23173","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

从全能性到多能性的顺序变化发生在哺乳动物胚胎的早期发育过程中。然而,由于缺乏细胞模型来再现干细胞在每个阶段的不同潜能,它们的分子和细胞特征仍然模糊不清。建立同源的幼稚多能干细胞和原始多能干细胞,代表植入前胚泡内细胞团和植入后胚胎上胚层的多能性,有助于了解两种不同状态的多能干细胞的独特特征。这篇综述讨论了幼稚多能性和原始多能性之间的显著差异,包括信号通路、新陈代谢和表观遗传状态,最终有助于全面了解它们在哺乳动物早期胚胎发育过程中的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crosstalk between Signaling Pathways and Energy Metabolism in Pluripotency.

The sequential change from totipotency to multipotency occurs during early mammalian embryo development. However, due to the lack of cellular models to recapitulate the distinct potency of stem cells at each stage, their molecular and cellular characteristics remain ambiguous. The establishment of isogenic naïve and primed pluripotent stem cells to represent the pluripotency in the inner cell mass of the pre-implantation blastocyst and in the epiblast from the post-implantation embryo allows the understanding of the distinctive characteristics of two different states of pluripotent stem cells. This review discusses the prominent disparities between naïve and primed pluripotency, including signaling pathways, metabolism, and epigenetic status, ultimately facilitating a comprehensive understanding of their significance during early mammalian embryonic development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of stem cells
International journal of stem cells Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.10
自引率
4.30%
发文量
38
期刊介绍: International Journal of Stem Cells (Int J Stem Cells), a peer-reviewed open access journal, principally aims to provide a forum for investigators in the field of stem cell biology to present their research findings and share their visions and opinions. Int J Stem Cells covers all aspects of stem cell biology including basic, clinical and translational research on genetics, biochemistry, and physiology of various types of stem cells including embryonic, adult and induced stem cells. Reports on epigenetics, genomics, proteomics, metabolomics of stem cells are welcome as well. Int J Stem Cells also publishes review articles, technical reports and treatise on ethical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信