利用深度学习从宽域镜面显微镜成像中检测福氏内皮营养不良症:一项试点研究。

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Valencia Hui Xian Foo, Gilbert Y S Lim, Yu-Chi Liu, Hon Shing Ong, Evan Wong, Stacy Chan, Jipson Wong, Jodhbir S Mehta, Daniel S W Ting, Marcus Ang
{"title":"利用深度学习从宽域镜面显微镜成像中检测福氏内皮营养不良症:一项试点研究。","authors":"Valencia Hui Xian Foo, Gilbert Y S Lim, Yu-Chi Liu, Hon Shing Ong, Evan Wong, Stacy Chan, Jipson Wong, Jodhbir S Mehta, Daniel S W Ting, Marcus Ang","doi":"10.1186/s40662-024-00378-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To describe the diagnostic performance of a deep learning (DL) algorithm in detecting Fuchs endothelial corneal dystrophy (FECD) based on specular microscopy (SM) and to reliably detect widefield peripheral SM images with an endothelial cell density (ECD) > 1000 cells/mm<sup>2</sup>.</p><p><strong>Methods: </strong>Five hundred and forty-seven subjects had SM imaging performed for the central cornea endothelium. One hundred and seventy-three images had FECD, while 602 images had other diagnoses. Using fivefold cross-validation on the dataset containing 775 central SM images combined with ECD, coefficient of variation (CV) and hexagonal endothelial cell ratio (HEX), the first DL model was trained to discriminate FECD from other images and was further tested on an external set of 180 images. In eyes with FECD, a separate DL model was trained with 753 central/paracentral SM images to detect SM with ECD > 1000 cells/mm<sup>2</sup> and tested on 557 peripheral SM images. Area under curve (AUC), sensitivity and specificity were evaluated.</p><p><strong>Results: </strong>The first model achieved an AUC of 0.96 with 0.91 sensitivity and 0.91 specificity in detecting FECD from other images. With an external validation set, the model achieved an AUC of 0.77, with a sensitivity of 0.69 and specificity of 0.68 in differentiating FECD from other diagnoses. The second model achieved an AUC of 0.88 with 0.79 sensitivity and 0.78 specificity in detecting peripheral SM images with ECD > 1000 cells/mm<sup>2</sup>.</p><p><strong>Conclusions: </strong>Our pilot study developed a DL model that could reliably detect FECD from other SM images and identify widefield SM images with ECD > 1000 cells/mm<sup>2</sup> in eyes with FECD. This could be the foundation for future DL models to track progression of eyes with FECD and identify candidates suitable for therapies such as Descemet stripping only.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946096/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning for detection of Fuchs endothelial dystrophy from widefield specular microscopy imaging: a pilot study.\",\"authors\":\"Valencia Hui Xian Foo, Gilbert Y S Lim, Yu-Chi Liu, Hon Shing Ong, Evan Wong, Stacy Chan, Jipson Wong, Jodhbir S Mehta, Daniel S W Ting, Marcus Ang\",\"doi\":\"10.1186/s40662-024-00378-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>To describe the diagnostic performance of a deep learning (DL) algorithm in detecting Fuchs endothelial corneal dystrophy (FECD) based on specular microscopy (SM) and to reliably detect widefield peripheral SM images with an endothelial cell density (ECD) > 1000 cells/mm<sup>2</sup>.</p><p><strong>Methods: </strong>Five hundred and forty-seven subjects had SM imaging performed for the central cornea endothelium. One hundred and seventy-three images had FECD, while 602 images had other diagnoses. Using fivefold cross-validation on the dataset containing 775 central SM images combined with ECD, coefficient of variation (CV) and hexagonal endothelial cell ratio (HEX), the first DL model was trained to discriminate FECD from other images and was further tested on an external set of 180 images. In eyes with FECD, a separate DL model was trained with 753 central/paracentral SM images to detect SM with ECD > 1000 cells/mm<sup>2</sup> and tested on 557 peripheral SM images. Area under curve (AUC), sensitivity and specificity were evaluated.</p><p><strong>Results: </strong>The first model achieved an AUC of 0.96 with 0.91 sensitivity and 0.91 specificity in detecting FECD from other images. With an external validation set, the model achieved an AUC of 0.77, with a sensitivity of 0.69 and specificity of 0.68 in differentiating FECD from other diagnoses. The second model achieved an AUC of 0.88 with 0.79 sensitivity and 0.78 specificity in detecting peripheral SM images with ECD > 1000 cells/mm<sup>2</sup>.</p><p><strong>Conclusions: </strong>Our pilot study developed a DL model that could reliably detect FECD from other SM images and identify widefield SM images with ECD > 1000 cells/mm<sup>2</sup> in eyes with FECD. This could be the foundation for future DL models to track progression of eyes with FECD and identify candidates suitable for therapies such as Descemet stripping only.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946096/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40662-024-00378-1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40662-024-00378-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:目的:描述深度学习(DL)算法在基于镜面显微镜(SM)检测福氏内皮性角膜营养不良(FECD)方面的诊断性能,以及可靠检测内皮细胞密度(ECD)> 1000 cells/mm2的宽视野周边SM图像:方法:对五百四十七名受试者的角膜中央内皮进行了SM成像。有 173 张图像被诊断为 FECD,602 张图像被诊断为其他疾病。通过在包含 775 张中央 SM 图像的数据集上进行五倍交叉验证,并结合 ECD、变异系数 (CV) 和六角形内皮细胞比率 (HEX),第一个 DL 模型被训练成能区分 FECD 和其他图像,并在 180 张外部图像集上进行了进一步测试。在有 FECD 的眼球中,用 753 张中心/旁中心 SM 图像训练了一个单独的 DL 模型,以检测 ECD > 1000 cells/mm2 的 SM,并在 557 张周边 SM 图像上进行了测试。对曲线下面积(AUC)、灵敏度和特异性进行了评估:第一个模型在从其他图像检测 FECD 方面的 AUC 为 0.96,灵敏度为 0.91,特异度为 0.91。在外部验证集上,该模型在区分 FECD 和其他诊断方面的 AUC 为 0.77,灵敏度为 0.69,特异度为 0.68。第二个模型在检测 ECD > 1000 cells/mm2 的外周 SM 图像时,AUC 为 0.88,灵敏度为 0.79,特异度为 0.78:我们的试验研究建立了一个DL模型,该模型能从其他SM图像中可靠地检测出FECD,并能识别FECD眼球中ECD > 1000 cells/mm2的宽视野SM图像。这可以为未来的 DL 模型奠定基础,以便跟踪 FECD 眼球的进展情况,并确定适合采用去眼袋剥离术等疗法的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning for detection of Fuchs endothelial dystrophy from widefield specular microscopy imaging: a pilot study.

Background: To describe the diagnostic performance of a deep learning (DL) algorithm in detecting Fuchs endothelial corneal dystrophy (FECD) based on specular microscopy (SM) and to reliably detect widefield peripheral SM images with an endothelial cell density (ECD) > 1000 cells/mm2.

Methods: Five hundred and forty-seven subjects had SM imaging performed for the central cornea endothelium. One hundred and seventy-three images had FECD, while 602 images had other diagnoses. Using fivefold cross-validation on the dataset containing 775 central SM images combined with ECD, coefficient of variation (CV) and hexagonal endothelial cell ratio (HEX), the first DL model was trained to discriminate FECD from other images and was further tested on an external set of 180 images. In eyes with FECD, a separate DL model was trained with 753 central/paracentral SM images to detect SM with ECD > 1000 cells/mm2 and tested on 557 peripheral SM images. Area under curve (AUC), sensitivity and specificity were evaluated.

Results: The first model achieved an AUC of 0.96 with 0.91 sensitivity and 0.91 specificity in detecting FECD from other images. With an external validation set, the model achieved an AUC of 0.77, with a sensitivity of 0.69 and specificity of 0.68 in differentiating FECD from other diagnoses. The second model achieved an AUC of 0.88 with 0.79 sensitivity and 0.78 specificity in detecting peripheral SM images with ECD > 1000 cells/mm2.

Conclusions: Our pilot study developed a DL model that could reliably detect FECD from other SM images and identify widefield SM images with ECD > 1000 cells/mm2 in eyes with FECD. This could be the foundation for future DL models to track progression of eyes with FECD and identify candidates suitable for therapies such as Descemet stripping only.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信