Era Vaidya Malhotra, Suresh Chand Mali, Shreya Sharma, Sangita Bansal
{"title":"用于保存啤酒花(Humulus lupulus)遗传资源的液滴玻璃化低温保存方案。","authors":"Era Vaidya Malhotra, Suresh Chand Mali, Shreya Sharma, Sangita Bansal","doi":"10.1016/j.cryobiol.2024.104887","DOIUrl":null,"url":null,"abstract":"<div><p>Hops (<em>Humulus lupulus</em> L.) is essentially used in the brewing industry as it contributes to flavor, and aroma of beer. However, the genetic diversity of hops is increasingly threatened by diseases, environmental changes, and urbanization. Cryopreservation has emerged as a pivotal strategy for safeguarding and maintaining the genetic diversity of hops. The present work presents a comprehensive study on the cryopreservation of hops, focusing on the development and optimization of a droplet vitrification based cryopreservation protocol. Shoot tips excised from one month old <em>in vitro</em> cultures were precultured on 0.3 M sucrose, dehydrated in a loading solution followed by treatment with PVS2 solution for different durations. Significant effect of PVS2 dehydration was observed on post-thaw survival and regeneration after cryoconservation with maximum 50% post-thaw regeneration observed in shoot tips dehydrated in PVS2 for 30 min. Genetic fidelity of the regenerated plants was confirmed using 30 ISSR markers. Reproducibility of the developed protocol was tested on seven other accessions and post thaw regeneration ranging from 43 to 70% was observed across the accessions. The present study reports a highly efficient protocol for conservation of hops germplasm. The results indicate that droplet vitrification can be used as a reliable and sustainable approach for hop genetic preservation, with high survival rates and minimal genetic alterations observed in cryopreserved samples. To the best of our knowledge, this is the first report on DV based cryopreservation of hops germplasm.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A droplet vitrification cryopreservation protocol for conservation of hops (Humulus lupulus) genetic resources\",\"authors\":\"Era Vaidya Malhotra, Suresh Chand Mali, Shreya Sharma, Sangita Bansal\",\"doi\":\"10.1016/j.cryobiol.2024.104887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hops (<em>Humulus lupulus</em> L.) is essentially used in the brewing industry as it contributes to flavor, and aroma of beer. However, the genetic diversity of hops is increasingly threatened by diseases, environmental changes, and urbanization. Cryopreservation has emerged as a pivotal strategy for safeguarding and maintaining the genetic diversity of hops. The present work presents a comprehensive study on the cryopreservation of hops, focusing on the development and optimization of a droplet vitrification based cryopreservation protocol. Shoot tips excised from one month old <em>in vitro</em> cultures were precultured on 0.3 M sucrose, dehydrated in a loading solution followed by treatment with PVS2 solution for different durations. Significant effect of PVS2 dehydration was observed on post-thaw survival and regeneration after cryoconservation with maximum 50% post-thaw regeneration observed in shoot tips dehydrated in PVS2 for 30 min. Genetic fidelity of the regenerated plants was confirmed using 30 ISSR markers. Reproducibility of the developed protocol was tested on seven other accessions and post thaw regeneration ranging from 43 to 70% was observed across the accessions. The present study reports a highly efficient protocol for conservation of hops germplasm. The results indicate that droplet vitrification can be used as a reliable and sustainable approach for hop genetic preservation, with high survival rates and minimal genetic alterations observed in cryopreserved samples. To the best of our knowledge, this is the first report on DV based cryopreservation of hops germplasm.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011224024000427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011224024000427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A droplet vitrification cryopreservation protocol for conservation of hops (Humulus lupulus) genetic resources
Hops (Humulus lupulus L.) is essentially used in the brewing industry as it contributes to flavor, and aroma of beer. However, the genetic diversity of hops is increasingly threatened by diseases, environmental changes, and urbanization. Cryopreservation has emerged as a pivotal strategy for safeguarding and maintaining the genetic diversity of hops. The present work presents a comprehensive study on the cryopreservation of hops, focusing on the development and optimization of a droplet vitrification based cryopreservation protocol. Shoot tips excised from one month old in vitro cultures were precultured on 0.3 M sucrose, dehydrated in a loading solution followed by treatment with PVS2 solution for different durations. Significant effect of PVS2 dehydration was observed on post-thaw survival and regeneration after cryoconservation with maximum 50% post-thaw regeneration observed in shoot tips dehydrated in PVS2 for 30 min. Genetic fidelity of the regenerated plants was confirmed using 30 ISSR markers. Reproducibility of the developed protocol was tested on seven other accessions and post thaw regeneration ranging from 43 to 70% was observed across the accessions. The present study reports a highly efficient protocol for conservation of hops germplasm. The results indicate that droplet vitrification can be used as a reliable and sustainable approach for hop genetic preservation, with high survival rates and minimal genetic alterations observed in cryopreserved samples. To the best of our knowledge, this is the first report on DV based cryopreservation of hops germplasm.