{"title":"具有巨型内电场的萘二亚胺超分子光催化剂的双重功能,可实现高效的氢气和氧气进化。","authors":"Shicheng Xu, Siqi Chen, Yuxin Li, Qiong Gao, Xingjian Luo, Min Li, Lirong Ren, Peng Wang, Liping Liu, Jun Wang, Xianjie Chen, Qian Chen, Yongfa Zhu","doi":"10.1002/smll.202400344","DOIUrl":null,"url":null,"abstract":"<p>Organic supramolecular photocatalysts have garnered widespread attention due to their adjustable structure and exceptional photocatalytic activity. Herein, a novel bis-dicarboxyphenyl-substituent naphthalenediimide self-assembly supramolecular photocatalyst (SA-NDI-BCOOH) with efficient dual-functional photocatalytic performance is successfully constructed. The large molecular dipole moment and short-range ordered stacking structure of SA-NDI-BCOOH synergistically create a giant internal electric field (IEF), resulting in a remarkable 6.7-fold increase in its charge separation efficiency. Additionally, the tetracarboxylic structure of SA-NDI-BCOOH greatly enhances its hydrophilicity. Thus, SA-NDI-BCOOH demonstrates efficient dual-functional activity for photocatalytic hydrogen and oxygen evolution, with rates of 372.8 and 3.8 µmol h<sup>−1</sup>, respectively. Meanwhile, a notable apparent quantum efficiency of 10.86% at 400 nm for hydrogen evolution is achieved, prominently surpassing many reported supramolecular photocatalysts. More importantly, with the help of dual co-catalysts, it exhibits photocatalytic overall water splitting activity with H<sub>2</sub> and O<sub>2</sub> evolution rates of 3.2 and 1.6 µmol h<sup>−1</sup>. Briefly, this work sheds light on enhancing the IEF by controlling the molecular polarity and stacking structure to dramatically improve the photocatalytic performance of supramolecular materials.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"20 32","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Function of Naphthalenediimide Supramolecular Photocatalyst with Giant Internal Electric Field for Efficient Hydrogen and Oxygen Evolution\",\"authors\":\"Shicheng Xu, Siqi Chen, Yuxin Li, Qiong Gao, Xingjian Luo, Min Li, Lirong Ren, Peng Wang, Liping Liu, Jun Wang, Xianjie Chen, Qian Chen, Yongfa Zhu\",\"doi\":\"10.1002/smll.202400344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Organic supramolecular photocatalysts have garnered widespread attention due to their adjustable structure and exceptional photocatalytic activity. Herein, a novel bis-dicarboxyphenyl-substituent naphthalenediimide self-assembly supramolecular photocatalyst (SA-NDI-BCOOH) with efficient dual-functional photocatalytic performance is successfully constructed. The large molecular dipole moment and short-range ordered stacking structure of SA-NDI-BCOOH synergistically create a giant internal electric field (IEF), resulting in a remarkable 6.7-fold increase in its charge separation efficiency. Additionally, the tetracarboxylic structure of SA-NDI-BCOOH greatly enhances its hydrophilicity. Thus, SA-NDI-BCOOH demonstrates efficient dual-functional activity for photocatalytic hydrogen and oxygen evolution, with rates of 372.8 and 3.8 µmol h<sup>−1</sup>, respectively. Meanwhile, a notable apparent quantum efficiency of 10.86% at 400 nm for hydrogen evolution is achieved, prominently surpassing many reported supramolecular photocatalysts. More importantly, with the help of dual co-catalysts, it exhibits photocatalytic overall water splitting activity with H<sub>2</sub> and O<sub>2</sub> evolution rates of 3.2 and 1.6 µmol h<sup>−1</sup>. Briefly, this work sheds light on enhancing the IEF by controlling the molecular polarity and stacking structure to dramatically improve the photocatalytic performance of supramolecular materials.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"20 32\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202400344\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202400344","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dual Function of Naphthalenediimide Supramolecular Photocatalyst with Giant Internal Electric Field for Efficient Hydrogen and Oxygen Evolution
Organic supramolecular photocatalysts have garnered widespread attention due to their adjustable structure and exceptional photocatalytic activity. Herein, a novel bis-dicarboxyphenyl-substituent naphthalenediimide self-assembly supramolecular photocatalyst (SA-NDI-BCOOH) with efficient dual-functional photocatalytic performance is successfully constructed. The large molecular dipole moment and short-range ordered stacking structure of SA-NDI-BCOOH synergistically create a giant internal electric field (IEF), resulting in a remarkable 6.7-fold increase in its charge separation efficiency. Additionally, the tetracarboxylic structure of SA-NDI-BCOOH greatly enhances its hydrophilicity. Thus, SA-NDI-BCOOH demonstrates efficient dual-functional activity for photocatalytic hydrogen and oxygen evolution, with rates of 372.8 and 3.8 µmol h−1, respectively. Meanwhile, a notable apparent quantum efficiency of 10.86% at 400 nm for hydrogen evolution is achieved, prominently surpassing many reported supramolecular photocatalysts. More importantly, with the help of dual co-catalysts, it exhibits photocatalytic overall water splitting activity with H2 and O2 evolution rates of 3.2 and 1.6 µmol h−1. Briefly, this work sheds light on enhancing the IEF by controlling the molecular polarity and stacking structure to dramatically improve the photocatalytic performance of supramolecular materials.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.