Cameron Freshwater, Sean C Anderson, David D Huff, Joseph M Smith, Doug Jackson, Brian Hendriks, Scott G Hinch, Stephen Johnston, Andrew W Trites, Jackie King
{"title":"大鳞大麻哈鱼在大陆架上的深度分布受地点、季节和个体状况之间相互作用的影响。","authors":"Cameron Freshwater, Sean C Anderson, David D Huff, Joseph M Smith, Doug Jackson, Brian Hendriks, Scott G Hinch, Stephen Johnston, Andrew W Trites, Jackie King","doi":"10.1186/s40462-024-00464-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ecological and physical conditions vary with depth in aquatic ecosystems, resulting in gradients of habitat suitability. Although variation in vertical distributions among individuals provides evidence of habitat selection, it has been challenging to disentangle how processes at multiple spatio-temporal scales shape behaviour.</p><p><strong>Methods: </strong>We collected thousands of observations of depth from <math><mrow><mo>></mo> <mspace></mspace> <mn>300</mn></mrow> </math> acoustically tagged adult Chinook salmon Oncorhynchus tshawytscha, spanning multiple seasons and years. We used these data to parameterize a machine-learning model to disentangle the influence of spatial, temporal, and dynamic oceanographic variables while accounting for differences in individual condition and maturation stage.</p><p><strong>Results: </strong>The top performing machine learning model used bathymetric depth ratio (i.e., individual depth relative to seafloor depth) as a response. We found that bathymetry, season, maturation stage, and spatial location most strongly influenced Chinook salmon depth. Chinook salmon bathymetric depth ratios were deepest in shallow water, during winter, and for immature individuals. We also identified non-linear interactions among covariates, resulting in spatially-varying effects of zooplankton concentration, lunar cycle, temperature and oxygen concentration.</p><p><strong>Conclusions: </strong>Our results suggest Chinook salmon vertical habitat use is a function of ecological interactions, not physiological constraints. Temporal and spatial variation in depth distributions could be used to guide management decisions intended to reduce fishery impacts on Chinook salmon. More generally, our findings demonstrate how complex interactions among bathymetry, seasonality, location, and life history stage regulate vertical habitat selection.</p>","PeriodicalId":54288,"journal":{"name":"Movement Ecology","volume":"12 1","pages":"21"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337652/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chinook salmon depth distributions on the continental shelf are shaped by interactions between location, season, and individual condition.\",\"authors\":\"Cameron Freshwater, Sean C Anderson, David D Huff, Joseph M Smith, Doug Jackson, Brian Hendriks, Scott G Hinch, Stephen Johnston, Andrew W Trites, Jackie King\",\"doi\":\"10.1186/s40462-024-00464-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ecological and physical conditions vary with depth in aquatic ecosystems, resulting in gradients of habitat suitability. Although variation in vertical distributions among individuals provides evidence of habitat selection, it has been challenging to disentangle how processes at multiple spatio-temporal scales shape behaviour.</p><p><strong>Methods: </strong>We collected thousands of observations of depth from <math><mrow><mo>></mo> <mspace></mspace> <mn>300</mn></mrow> </math> acoustically tagged adult Chinook salmon Oncorhynchus tshawytscha, spanning multiple seasons and years. We used these data to parameterize a machine-learning model to disentangle the influence of spatial, temporal, and dynamic oceanographic variables while accounting for differences in individual condition and maturation stage.</p><p><strong>Results: </strong>The top performing machine learning model used bathymetric depth ratio (i.e., individual depth relative to seafloor depth) as a response. We found that bathymetry, season, maturation stage, and spatial location most strongly influenced Chinook salmon depth. Chinook salmon bathymetric depth ratios were deepest in shallow water, during winter, and for immature individuals. We also identified non-linear interactions among covariates, resulting in spatially-varying effects of zooplankton concentration, lunar cycle, temperature and oxygen concentration.</p><p><strong>Conclusions: </strong>Our results suggest Chinook salmon vertical habitat use is a function of ecological interactions, not physiological constraints. Temporal and spatial variation in depth distributions could be used to guide management decisions intended to reduce fishery impacts on Chinook salmon. More generally, our findings demonstrate how complex interactions among bathymetry, seasonality, location, and life history stage regulate vertical habitat selection.</p>\",\"PeriodicalId\":54288,\"journal\":{\"name\":\"Movement Ecology\",\"volume\":\"12 1\",\"pages\":\"21\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337652/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Movement Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40462-024-00464-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40462-024-00464-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Chinook salmon depth distributions on the continental shelf are shaped by interactions between location, season, and individual condition.
Background: Ecological and physical conditions vary with depth in aquatic ecosystems, resulting in gradients of habitat suitability. Although variation in vertical distributions among individuals provides evidence of habitat selection, it has been challenging to disentangle how processes at multiple spatio-temporal scales shape behaviour.
Methods: We collected thousands of observations of depth from acoustically tagged adult Chinook salmon Oncorhynchus tshawytscha, spanning multiple seasons and years. We used these data to parameterize a machine-learning model to disentangle the influence of spatial, temporal, and dynamic oceanographic variables while accounting for differences in individual condition and maturation stage.
Results: The top performing machine learning model used bathymetric depth ratio (i.e., individual depth relative to seafloor depth) as a response. We found that bathymetry, season, maturation stage, and spatial location most strongly influenced Chinook salmon depth. Chinook salmon bathymetric depth ratios were deepest in shallow water, during winter, and for immature individuals. We also identified non-linear interactions among covariates, resulting in spatially-varying effects of zooplankton concentration, lunar cycle, temperature and oxygen concentration.
Conclusions: Our results suggest Chinook salmon vertical habitat use is a function of ecological interactions, not physiological constraints. Temporal and spatial variation in depth distributions could be used to guide management decisions intended to reduce fishery impacts on Chinook salmon. More generally, our findings demonstrate how complex interactions among bathymetry, seasonality, location, and life history stage regulate vertical habitat selection.
Movement EcologyAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.60
自引率
4.90%
发文量
47
审稿时长
23 weeks
期刊介绍:
Movement Ecology is an open-access interdisciplinary journal publishing novel insights from empirical and theoretical approaches into the ecology of movement of the whole organism - either animals, plants or microorganisms - as the central theme. We welcome manuscripts on any taxa and any movement phenomena (e.g. foraging, dispersal and seasonal migration) addressing important research questions on the patterns, mechanisms, causes and consequences of organismal movement. Manuscripts will be rigorously peer-reviewed to ensure novelty and high quality.