盲人姿势的神经元控制

IF 2.3 3区 医学 Q3 CLINICAL NEUROLOGY
Brain Topography Pub Date : 2024-09-01 Epub Date: 2024-03-15 DOI:10.1007/s10548-024-01041-7
I Helmich, R Gemmerich
{"title":"盲人姿势的神经元控制","authors":"I Helmich, R Gemmerich","doi":"10.1007/s10548-024-01041-7","DOIUrl":null,"url":null,"abstract":"<p><p>The control of posture is guided by the integration of sensory information. Because blind individuals cannot apply visual information to control posture as sighted individuals do they must compensate by the remaining senses. We therefore hypothesize that blind individuals alter their brain activation in the sensorimotor cortex during postural control to compensate for balance control without vision by the increased integration of somatosensory information. Ten blind and ten sighted (matched) individuals controlled posture during conditions with (I) eyes closed / open, and (II) stable / unstable surface conditions. Postural sway was recorded by applying a pressure distribution measuring plate. Brain activation was collected by functional Near InfraRed Spectroscopy (fNIRS) above motor-sensory cortices of the right and left hemispheres. Blind individuals showed significantly increased postural sway when balancing with open eyes on an unstable surface and when compared to sighted individuals. Whereas blind individuals showed significantly increased brain activation when balancing with open eyes on stable and unstable surface conditions, sighted individuals increased their brain oxygenation only during closed eyes and unstable surface conditions. Overall conditions, blind individuals presented significantly increased brain activation in two channels of the left and right hemispheric motor-sensory cortex when compared to sighted individuals. We therefore conclude that sighted individuals increase their brain oxygenation in the sensorimotor cortex during postural control tasks that demand sensory integration processes. Blind individuals are characterized by increased brain activation overall conditions indicating additional sensory integration during postural control. Thus, the sensorimotor cortex of blind individuals adapts to control posture without vision.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"783-795"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393032/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neuronal Control of Posture in Blind Individuals.\",\"authors\":\"I Helmich, R Gemmerich\",\"doi\":\"10.1007/s10548-024-01041-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The control of posture is guided by the integration of sensory information. Because blind individuals cannot apply visual information to control posture as sighted individuals do they must compensate by the remaining senses. We therefore hypothesize that blind individuals alter their brain activation in the sensorimotor cortex during postural control to compensate for balance control without vision by the increased integration of somatosensory information. Ten blind and ten sighted (matched) individuals controlled posture during conditions with (I) eyes closed / open, and (II) stable / unstable surface conditions. Postural sway was recorded by applying a pressure distribution measuring plate. Brain activation was collected by functional Near InfraRed Spectroscopy (fNIRS) above motor-sensory cortices of the right and left hemispheres. Blind individuals showed significantly increased postural sway when balancing with open eyes on an unstable surface and when compared to sighted individuals. Whereas blind individuals showed significantly increased brain activation when balancing with open eyes on stable and unstable surface conditions, sighted individuals increased their brain oxygenation only during closed eyes and unstable surface conditions. Overall conditions, blind individuals presented significantly increased brain activation in two channels of the left and right hemispheric motor-sensory cortex when compared to sighted individuals. We therefore conclude that sighted individuals increase their brain oxygenation in the sensorimotor cortex during postural control tasks that demand sensory integration processes. Blind individuals are characterized by increased brain activation overall conditions indicating additional sensory integration during postural control. Thus, the sensorimotor cortex of blind individuals adapts to control posture without vision.</p>\",\"PeriodicalId\":55329,\"journal\":{\"name\":\"Brain Topography\",\"volume\":\" \",\"pages\":\"783-795\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393032/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Topography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10548-024-01041-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-024-01041-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

姿势的控制是在感官信息整合的指导下进行的。由于盲人无法像明眼人那样运用视觉信息来控制姿势,他们必须通过其他感官来进行补偿。因此,我们假设盲人在控制姿势时会改变其感觉运动皮层的大脑激活,以通过增加躯体感觉信息的整合来补偿没有视觉的平衡控制。十名盲人和十名视力正常(匹配)的人在(I)闭眼/睁眼和(II)稳定/不稳定表面条件下控制姿势。通过压力分布测量板记录姿势摇摆。通过功能性近红外光谱(fNIRS)收集左右半球运动感觉皮层的脑激活情况。与视力正常的人相比,盲人在不稳定的表面上睁眼平衡时的姿势摇摆明显增加。盲人在稳定和不稳定表面条件下睁眼保持平衡时,大脑活化明显增加,而明眼人仅在闭眼和不稳定表面条件下大脑氧合增加。与视力正常的人相比,盲人左右半球运动感觉皮层两个通道的大脑激活度在整体条件下明显增加。因此,我们得出结论:在需要进行感觉整合的姿势控制任务中,明眼人会增加感觉运动皮层的脑供氧量。盲人的特点是大脑整体激活增加,这表明在姿势控制过程中需要额外的感觉整合。因此,盲人的感觉运动皮层能够适应在没有视觉的情况下控制姿势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Neuronal Control of Posture in Blind Individuals.

Neuronal Control of Posture in Blind Individuals.

The control of posture is guided by the integration of sensory information. Because blind individuals cannot apply visual information to control posture as sighted individuals do they must compensate by the remaining senses. We therefore hypothesize that blind individuals alter their brain activation in the sensorimotor cortex during postural control to compensate for balance control without vision by the increased integration of somatosensory information. Ten blind and ten sighted (matched) individuals controlled posture during conditions with (I) eyes closed / open, and (II) stable / unstable surface conditions. Postural sway was recorded by applying a pressure distribution measuring plate. Brain activation was collected by functional Near InfraRed Spectroscopy (fNIRS) above motor-sensory cortices of the right and left hemispheres. Blind individuals showed significantly increased postural sway when balancing with open eyes on an unstable surface and when compared to sighted individuals. Whereas blind individuals showed significantly increased brain activation when balancing with open eyes on stable and unstable surface conditions, sighted individuals increased their brain oxygenation only during closed eyes and unstable surface conditions. Overall conditions, blind individuals presented significantly increased brain activation in two channels of the left and right hemispheric motor-sensory cortex when compared to sighted individuals. We therefore conclude that sighted individuals increase their brain oxygenation in the sensorimotor cortex during postural control tasks that demand sensory integration processes. Blind individuals are characterized by increased brain activation overall conditions indicating additional sensory integration during postural control. Thus, the sensorimotor cortex of blind individuals adapts to control posture without vision.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信