MS2Rescore 3.0 是一个模块化、灵活、用户友好的平台,可促进多肽鉴定,如 MS Amanda 3.0 所展示的那样。

IF 3.6 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Journal of Proteome Research Pub Date : 2024-08-02 Epub Date: 2024-03-16 DOI:10.1021/acs.jproteome.3c00785
Louise M Buur, Arthur Declercq, Marina Strobl, Robbin Bouwmeester, Sven Degroeve, Lennart Martens, Viktoria Dorfer, Ralf Gabriels
{"title":"MS2Rescore 3.0 是一个模块化、灵活、用户友好的平台,可促进多肽鉴定,如 MS Amanda 3.0 所展示的那样。","authors":"Louise M Buur, Arthur Declercq, Marina Strobl, Robbin Bouwmeester, Sven Degroeve, Lennart Martens, Viktoria Dorfer, Ralf Gabriels","doi":"10.1021/acs.jproteome.3c00785","DOIUrl":null,"url":null,"abstract":"<p><p>Rescoring of peptide-spectrum matches (PSMs) has emerged as a standard procedure for the analysis of tandem mass spectrometry data. This emphasizes the need for software maintenance and continuous improvement for such algorithms. We introduce MS<sup>2</sup>Rescore 3.0, a versatile, modular, and user-friendly platform designed to increase peptide identifications. Researchers can install MS<sup>2</sup>Rescore across various platforms with minimal effort and benefit from a graphical user interface, a modular Python API, and extensive documentation. To showcase this new version, we connected MS<sup>2</sup>Rescore 3.0 with MS Amanda 3.0, a new release of the well-established search engine, addressing previous limitations on automatic rescoring. Among new features, MS Amanda now contains additional output columns that can be used for rescoring. The full potential of rescoring is best revealed when applied on challenging data sets. We therefore evaluated the performance of these two tools on publicly available single-cell data sets, where the number of PSMs was substantially increased, thereby demonstrating that MS<sup>2</sup>Rescore offers a powerful solution to boost peptide identifications. MS<sup>2</sup>Rescore's modular design and user-friendly interface make data-driven rescoring easily accessible, even for inexperienced users. We therefore expect the MS<sup>2</sup>Rescore to be a valuable tool for the wider proteomics community. MS<sup>2</sup>Rescore is available at https://github.com/compomics/ms2rescore.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"3200-3207"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MS<sup>2</sup>Rescore 3.0 Is a Modular, Flexible, and User-Friendly Platform to Boost Peptide Identifications, as Showcased with MS Amanda 3.0.\",\"authors\":\"Louise M Buur, Arthur Declercq, Marina Strobl, Robbin Bouwmeester, Sven Degroeve, Lennart Martens, Viktoria Dorfer, Ralf Gabriels\",\"doi\":\"10.1021/acs.jproteome.3c00785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rescoring of peptide-spectrum matches (PSMs) has emerged as a standard procedure for the analysis of tandem mass spectrometry data. This emphasizes the need for software maintenance and continuous improvement for such algorithms. We introduce MS<sup>2</sup>Rescore 3.0, a versatile, modular, and user-friendly platform designed to increase peptide identifications. Researchers can install MS<sup>2</sup>Rescore across various platforms with minimal effort and benefit from a graphical user interface, a modular Python API, and extensive documentation. To showcase this new version, we connected MS<sup>2</sup>Rescore 3.0 with MS Amanda 3.0, a new release of the well-established search engine, addressing previous limitations on automatic rescoring. Among new features, MS Amanda now contains additional output columns that can be used for rescoring. The full potential of rescoring is best revealed when applied on challenging data sets. We therefore evaluated the performance of these two tools on publicly available single-cell data sets, where the number of PSMs was substantially increased, thereby demonstrating that MS<sup>2</sup>Rescore offers a powerful solution to boost peptide identifications. MS<sup>2</sup>Rescore's modular design and user-friendly interface make data-driven rescoring easily accessible, even for inexperienced users. We therefore expect the MS<sup>2</sup>Rescore to be a valuable tool for the wider proteomics community. MS<sup>2</sup>Rescore is available at https://github.com/compomics/ms2rescore.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\" \",\"pages\":\"3200-3207\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.3c00785\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.3c00785","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

肽谱匹配重评分(PSM)已成为串联质谱数据分析的标准程序。这就需要对此类算法进行软件维护和持续改进。我们介绍 MS2Rescore 3.0,这是一个多功能、模块化、用户友好的平台,旨在提高多肽鉴定率。研究人员只需花费极少的精力即可在各种平台上安装 MS2Rescore,并从图形用户界面、模块化 Python API 和大量文档中获益。为了展示这个新版本,我们将MS2Rescore 3.0与MS Amanda 3.0连接起来,MS Amanda 3.0是久负盛名的搜索引擎的新版本,解决了以前自动重分的限制。在新功能中,MS Amanda 现在包含了更多可用于重新评分的输出列。在具有挑战性的数据集上应用时,最能充分体现重判的潜力。因此,我们在公开的单细胞数据集上评估了这两款工具的性能,在这些数据集上,PSM 的数量大幅增加,从而证明 MS2Rescore 为提高多肽鉴定提供了强大的解决方案。MS2Rescore 的模块化设计和友好的用户界面使数据驱动的重新评分变得简单易行,即使是没有经验的用户也能轻松使用。因此,我们期待 MS2Rescore 成为更广泛的蛋白质组学社区的宝贵工具。MS2Rescore可在https://github.com/compomics/ms2rescore。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MS<sup>2</sup>Rescore 3.0 Is a Modular, Flexible, and User-Friendly Platform to Boost Peptide Identifications, as Showcased with MS Amanda 3.0.

MS2Rescore 3.0 Is a Modular, Flexible, and User-Friendly Platform to Boost Peptide Identifications, as Showcased with MS Amanda 3.0.

Rescoring of peptide-spectrum matches (PSMs) has emerged as a standard procedure for the analysis of tandem mass spectrometry data. This emphasizes the need for software maintenance and continuous improvement for such algorithms. We introduce MS2Rescore 3.0, a versatile, modular, and user-friendly platform designed to increase peptide identifications. Researchers can install MS2Rescore across various platforms with minimal effort and benefit from a graphical user interface, a modular Python API, and extensive documentation. To showcase this new version, we connected MS2Rescore 3.0 with MS Amanda 3.0, a new release of the well-established search engine, addressing previous limitations on automatic rescoring. Among new features, MS Amanda now contains additional output columns that can be used for rescoring. The full potential of rescoring is best revealed when applied on challenging data sets. We therefore evaluated the performance of these two tools on publicly available single-cell data sets, where the number of PSMs was substantially increased, thereby demonstrating that MS2Rescore offers a powerful solution to boost peptide identifications. MS2Rescore's modular design and user-friendly interface make data-driven rescoring easily accessible, even for inexperienced users. We therefore expect the MS2Rescore to be a valuable tool for the wider proteomics community. MS2Rescore is available at https://github.com/compomics/ms2rescore.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信