使用加权核规范正则化的高维多变量线性回归

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Namjoon Suh, Li-Hsiang Lin, Xiaoming Huo
{"title":"使用加权核规范正则化的高维多变量线性回归","authors":"Namjoon Suh, Li-Hsiang Lin, Xiaoming Huo","doi":"10.1080/10618600.2024.2331020","DOIUrl":null,"url":null,"abstract":"We consider a low-rank matrix estimation problem when the data is assumed to be generated from the multivariate linear regression model. To induce the low-rank coefficient matrix, we employ the wei...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Dimensional Multivariate Linear Regression with Weighted Nuclear Norm Regularization\",\"authors\":\"Namjoon Suh, Li-Hsiang Lin, Xiaoming Huo\",\"doi\":\"10.1080/10618600.2024.2331020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a low-rank matrix estimation problem when the data is assumed to be generated from the multivariate linear regression model. To induce the low-rank coefficient matrix, we employ the wei...\",\"PeriodicalId\":15422,\"journal\":{\"name\":\"Journal of Computational and Graphical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Graphical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10618600.2024.2331020\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Graphical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10618600.2024.2331020","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是假设数据由多元线性回归模型生成时的低秩矩阵估计问题。为了诱导出低秩系数矩阵,我们采用了wei...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Dimensional Multivariate Linear Regression with Weighted Nuclear Norm Regularization
We consider a low-rank matrix estimation problem when the data is assumed to be generated from the multivariate linear regression model. To induce the low-rank coefficient matrix, we employ the wei...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
8.30%
发文量
153
审稿时长
>12 weeks
期刊介绍: The Journal of Computational and Graphical Statistics (JCGS) presents the very latest techniques on improving and extending the use of computational and graphical methods in statistics and data analysis. Established in 1992, this journal contains cutting-edge research, data, surveys, and more on numerical graphical displays and methods, and perception. Articles are written for readers who have a strong background in statistics but are not necessarily experts in computing. Published in March, June, September, and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信