{"title":"通过氢进化 C-H/N-H 激活电化学 C-N 键形成的最新进展","authors":"Subban Kathiravan , Ian A. Nicholls","doi":"10.1016/j.crgsc.2024.100405","DOIUrl":null,"url":null,"abstract":"<div><p>Electroorganic synthesis is a powerful sustainable tool for achieving greener and more efficient chemical processes across various industries. By adhering to the principles of green chemistry, atom economy, and resource efficiency, electroorganic synthesis can play a pivotal role in addressing environmental concerns and promoting a more sustainable future for chemical production. This review focuses on the latest advancements in the emerging application of electrochemistry in C-N bond formation through C-H/N-H cross-coupling. The first part of the review describes the electrochemical amination of arenes using metal catalysis (Cu, Co, Ni) with directing groups on the arene moiety. The next section addresses the same type of electrochemical C-N bond formation on arenes without directing groups, which represents a more general strategy enabling the synthesis of anilines and various heterocyclic-bound arenes in high yields. Further developments on benzylic systems are also discussed. This is followed by developments in the combination of photocatalysis and electrochemistry to activate C-H bonds in arenes, alkanes, and benzylic systems, including the use of flow reactor configurations for these reactions.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100405"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000109/pdfft?md5=2a6566646747b81635db56a82a317245&pid=1-s2.0-S2666086524000109-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent advances in electrochemical C-N bond formation via C-H/N–H activation with hydrogen evolution\",\"authors\":\"Subban Kathiravan , Ian A. Nicholls\",\"doi\":\"10.1016/j.crgsc.2024.100405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electroorganic synthesis is a powerful sustainable tool for achieving greener and more efficient chemical processes across various industries. By adhering to the principles of green chemistry, atom economy, and resource efficiency, electroorganic synthesis can play a pivotal role in addressing environmental concerns and promoting a more sustainable future for chemical production. This review focuses on the latest advancements in the emerging application of electrochemistry in C-N bond formation through C-H/N-H cross-coupling. The first part of the review describes the electrochemical amination of arenes using metal catalysis (Cu, Co, Ni) with directing groups on the arene moiety. The next section addresses the same type of electrochemical C-N bond formation on arenes without directing groups, which represents a more general strategy enabling the synthesis of anilines and various heterocyclic-bound arenes in high yields. Further developments on benzylic systems are also discussed. This is followed by developments in the combination of photocatalysis and electrochemistry to activate C-H bonds in arenes, alkanes, and benzylic systems, including the use of flow reactor configurations for these reactions.</p></div>\",\"PeriodicalId\":296,\"journal\":{\"name\":\"Current Research in Green and Sustainable Chemistry\",\"volume\":\"8 \",\"pages\":\"Article 100405\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666086524000109/pdfft?md5=2a6566646747b81635db56a82a317245&pid=1-s2.0-S2666086524000109-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Green and Sustainable Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666086524000109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666086524000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Recent advances in electrochemical C-N bond formation via C-H/N–H activation with hydrogen evolution
Electroorganic synthesis is a powerful sustainable tool for achieving greener and more efficient chemical processes across various industries. By adhering to the principles of green chemistry, atom economy, and resource efficiency, electroorganic synthesis can play a pivotal role in addressing environmental concerns and promoting a more sustainable future for chemical production. This review focuses on the latest advancements in the emerging application of electrochemistry in C-N bond formation through C-H/N-H cross-coupling. The first part of the review describes the electrochemical amination of arenes using metal catalysis (Cu, Co, Ni) with directing groups on the arene moiety. The next section addresses the same type of electrochemical C-N bond formation on arenes without directing groups, which represents a more general strategy enabling the synthesis of anilines and various heterocyclic-bound arenes in high yields. Further developments on benzylic systems are also discussed. This is followed by developments in the combination of photocatalysis and electrochemistry to activate C-H bonds in arenes, alkanes, and benzylic systems, including the use of flow reactor configurations for these reactions.