根据连续波 EPRI 中的稀疏视图数据精确重建 4D 光谱空间图像

IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS
Zheng Zhang , Boris Epel , Buxin Chen , Dan Xia , Emil Y. Sidky , Howard Halpern , Xiaochuan Pan
{"title":"根据连续波 EPRI 中的稀疏视图数据精确重建 4D 光谱空间图像","authors":"Zheng Zhang ,&nbsp;Boris Epel ,&nbsp;Buxin Chen ,&nbsp;Dan Xia ,&nbsp;Emil Y. Sidky ,&nbsp;Howard Halpern ,&nbsp;Xiaochuan Pan","doi":"10.1016/j.jmr.2024.107654","DOIUrl":null,"url":null,"abstract":"<div><p>In continuous-wave electron paramagnetic resonance imaging (CW EPRI), data are collected generally at densely sampled views sufficient for achieving accurate reconstruction of a four dimensional spectral–spatial (4DSS) image by use of the conventional filtered-backprojection (FBP) algorithm. It is desirable to minimize the scan time by collection of data only at sparsely sampled views, referred to as sparse-view data. Interest thus remains in investigation of algorithms for accurate reconstruction of 4DSS images from sparse-view data collected for potentially enabling fast data acquisition in CW EPRI. In this study, we investigate and demonstrate optimization-based algorithms for accurate reconstruction of 4DSS images from sparse-view data. Numerical studies using simulated and real sparse-view data acquired in CW EPRI are conducted that reveal, in terms of image visualization and physical-parameter estimation, the potential of the algorithms developed for yielding accurate 4DSS images from sparse-view data in CW EPRI. The algorithms developed may be exploited for enabling sparse-view scans with minimized scan time in CW EPRI for yielding 4DSS images of quality comparable to, or better than, that of the FBP reconstruction from data collected at densely sampled views.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"361 ","pages":"Article 107654"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate reconstruction of 4D spectral–spatial images from sparse-view data in continuous-wave EPRI\",\"authors\":\"Zheng Zhang ,&nbsp;Boris Epel ,&nbsp;Buxin Chen ,&nbsp;Dan Xia ,&nbsp;Emil Y. Sidky ,&nbsp;Howard Halpern ,&nbsp;Xiaochuan Pan\",\"doi\":\"10.1016/j.jmr.2024.107654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In continuous-wave electron paramagnetic resonance imaging (CW EPRI), data are collected generally at densely sampled views sufficient for achieving accurate reconstruction of a four dimensional spectral–spatial (4DSS) image by use of the conventional filtered-backprojection (FBP) algorithm. It is desirable to minimize the scan time by collection of data only at sparsely sampled views, referred to as sparse-view data. Interest thus remains in investigation of algorithms for accurate reconstruction of 4DSS images from sparse-view data collected for potentially enabling fast data acquisition in CW EPRI. In this study, we investigate and demonstrate optimization-based algorithms for accurate reconstruction of 4DSS images from sparse-view data. Numerical studies using simulated and real sparse-view data acquired in CW EPRI are conducted that reveal, in terms of image visualization and physical-parameter estimation, the potential of the algorithms developed for yielding accurate 4DSS images from sparse-view data in CW EPRI. The algorithms developed may be exploited for enabling sparse-view scans with minimized scan time in CW EPRI for yielding 4DSS images of quality comparable to, or better than, that of the FBP reconstruction from data collected at densely sampled views.</p></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"361 \",\"pages\":\"Article 107654\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780724000387\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724000387","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在连续波电子顺磁共振成像(CW EPRI)中,一般是在密集采样视图上收集数据,通过使用传统的滤波背投影(FBP)算法,足以实现四维光谱空间(4DSS)图像的精确重建。我们希望通过只收集稀疏采样视图的数据(称为稀疏视图数据)来最大限度地缩短扫描时间。因此,研究从采集的稀疏视图数据中准确重建 4DSS 图像的算法,从而在 CW EPRI 中实现快速数据采集,仍然是我们的兴趣所在。在本研究中,我们研究并演示了基于优化的算法,用于从稀疏视图数据中精确重建 4DSS 图像。我们使用在 CW EPRI 中获取的模拟和真实稀疏视图数据进行了数值研究,结果表明,在图像可视化和物理参数估计方面,所开发的算法具有从 CW EPRI 中的稀疏视图数据生成精确 4DSS 图像的潜力。可以利用所开发的算法,在 CW EPRI 中以最短的扫描时间进行稀疏视图扫描,以获得质量与根据密集采样视图收集的数据进行 FBP 重建相当或更好的 4DSS 图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accurate reconstruction of 4D spectral–spatial images from sparse-view data in continuous-wave EPRI

Accurate reconstruction of 4D spectral–spatial images from sparse-view data in continuous-wave EPRI

In continuous-wave electron paramagnetic resonance imaging (CW EPRI), data are collected generally at densely sampled views sufficient for achieving accurate reconstruction of a four dimensional spectral–spatial (4DSS) image by use of the conventional filtered-backprojection (FBP) algorithm. It is desirable to minimize the scan time by collection of data only at sparsely sampled views, referred to as sparse-view data. Interest thus remains in investigation of algorithms for accurate reconstruction of 4DSS images from sparse-view data collected for potentially enabling fast data acquisition in CW EPRI. In this study, we investigate and demonstrate optimization-based algorithms for accurate reconstruction of 4DSS images from sparse-view data. Numerical studies using simulated and real sparse-view data acquired in CW EPRI are conducted that reveal, in terms of image visualization and physical-parameter estimation, the potential of the algorithms developed for yielding accurate 4DSS images from sparse-view data in CW EPRI. The algorithms developed may be exploited for enabling sparse-view scans with minimized scan time in CW EPRI for yielding 4DSS images of quality comparable to, or better than, that of the FBP reconstruction from data collected at densely sampled views.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
13.60%
发文量
150
审稿时长
69 days
期刊介绍: The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信