用于老年人跌倒检测的边缘计算变压器

International journal of neural systems Pub Date : 2024-05-01 Epub Date: 2024-03-16 DOI:10.1142/S0129065724500266
Jesús Fernandez-Bermejo, Jesús Martinez-Del-Rincon, Javier Dorado, Xavier Del Toro, María J Santofimia, Juan C Lopez
{"title":"用于老年人跌倒检测的边缘计算变压器","authors":"Jesús Fernandez-Bermejo, Jesús Martinez-Del-Rincon, Javier Dorado, Xavier Del Toro, María J Santofimia, Juan C Lopez","doi":"10.1142/S0129065724500266","DOIUrl":null,"url":null,"abstract":"<p><p>The global trend of increasing life expectancy introduces new challenges with far-reaching implications. Among these, the risk of falls among older adults is particularly significant, affecting individual health and the quality of life, and placing an additional burden on healthcare systems. Existing fall detection systems often have limitations, including delays due to continuous server communication, high false-positive rates, low adoption rates due to wearability and comfort issues, and high costs. In response to these challenges, this work presents a reliable, wearable, and cost-effective fall detection system. The proposed system consists of a fit-for-purpose device, with an embedded algorithm and an Inertial Measurement Unit (IMU), enabling real-time fall detection. The algorithm combines a Threshold-Based Algorithm (TBA) and a neural network with low number of parameters based on a Transformer architecture. This system demonstrates notable performance with 95.29% accuracy, 93.68% specificity, and 96.66% sensitivity, while only using a 0.38% of the trainable parameters used by the other approach.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450026"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge Computing Transformers for Fall Detection in Older Adults.\",\"authors\":\"Jesús Fernandez-Bermejo, Jesús Martinez-Del-Rincon, Javier Dorado, Xavier Del Toro, María J Santofimia, Juan C Lopez\",\"doi\":\"10.1142/S0129065724500266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The global trend of increasing life expectancy introduces new challenges with far-reaching implications. Among these, the risk of falls among older adults is particularly significant, affecting individual health and the quality of life, and placing an additional burden on healthcare systems. Existing fall detection systems often have limitations, including delays due to continuous server communication, high false-positive rates, low adoption rates due to wearability and comfort issues, and high costs. In response to these challenges, this work presents a reliable, wearable, and cost-effective fall detection system. The proposed system consists of a fit-for-purpose device, with an embedded algorithm and an Inertial Measurement Unit (IMU), enabling real-time fall detection. The algorithm combines a Threshold-Based Algorithm (TBA) and a neural network with low number of parameters based on a Transformer architecture. This system demonstrates notable performance with 95.29% accuracy, 93.68% specificity, and 96.66% sensitivity, while only using a 0.38% of the trainable parameters used by the other approach.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2450026\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065724500266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065724500266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球预期寿命延长的趋势带来了影响深远的新挑战。其中,老年人跌倒的风险尤为突出,不仅会影响个人健康和生活质量,还会给医疗保健系统带来额外负担。现有的跌倒检测系统往往存在局限性,包括服务器持续通信导致的延迟、高假阳性率、因可穿戴性和舒适性问题导致的低采用率以及高成本。为了应对这些挑战,这项研究提出了一种可靠、可穿戴、经济高效的跌倒检测系统。所提议的系统由一个适合各种用途的设备组成,该设备带有嵌入式算法和惯性测量单元(IMU),可实现实时跌倒检测。该算法结合了基于阈值的算法(TBA)和基于变压器架构的低参数神经网络。该系统具有显著的性能,准确率达 95.29%,特异性达 93.68%,灵敏度达 96.66%,而使用的可训练参数仅为其他方法的 0.38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge Computing Transformers for Fall Detection in Older Adults.

The global trend of increasing life expectancy introduces new challenges with far-reaching implications. Among these, the risk of falls among older adults is particularly significant, affecting individual health and the quality of life, and placing an additional burden on healthcare systems. Existing fall detection systems often have limitations, including delays due to continuous server communication, high false-positive rates, low adoption rates due to wearability and comfort issues, and high costs. In response to these challenges, this work presents a reliable, wearable, and cost-effective fall detection system. The proposed system consists of a fit-for-purpose device, with an embedded algorithm and an Inertial Measurement Unit (IMU), enabling real-time fall detection. The algorithm combines a Threshold-Based Algorithm (TBA) and a neural network with low number of parameters based on a Transformer architecture. This system demonstrates notable performance with 95.29% accuracy, 93.68% specificity, and 96.66% sensitivity, while only using a 0.38% of the trainable parameters used by the other approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信