金黄色葡萄球菌翻译延伸因子 P 的表达受应激诱导启动子的调控。

IF 1.8 3区 生物学 Q4 MICROBIOLOGY
Xingxing Zheng, Xiuhui Sun, Weiwei Xiang, Haiyan Ni, Long Zou, Zhong-Er Long
{"title":"金黄色葡萄球菌翻译延伸因子 P 的表达受应激诱导启动子的调控。","authors":"Xingxing Zheng, Xiuhui Sun, Weiwei Xiang, Haiyan Ni, Long Zou, Zhong-Er Long","doi":"10.1007/s10482-024-01954-0","DOIUrl":null,"url":null,"abstract":"<p><p>Translation elongation factor P, expressed by the efp gene, is a conserved protein closely related to bacterial virulence and environmental stress regulation responses, however, little is known about the efp gene expression regulations. Here, the strain of Staphylococcus aureus subsp. aureus NCTC 8325 was taken as the research object and cultured under different conditions, including different culture temperatures, pH, and antibiotics, to study the expression of the efp gene in S. aureus by qRT-PCR, the results showed that the expression of the efp gene is upregulated under high temperature (40 °C), acidic (pH 5.4) or alkaline (pH 9.4) culture conditions, but upregulated early and downregulated later under the conditions of 0.5 MIC antibiotics (chloramphenicol at the final concentration of 2 μg/mL and vancomycin at the final concentration of 0.25 μg/mL), indicating that the efp promoter in S. aureus is inducible. The efp promoter sequence and structure in S. aureus were predicted by bioinformatics methods, and the predicted promoter was validated by constructing a promoter-probe vector and a series of promoter mutants, the results showed that the efp promoter sequence in S. aureus, named Pro, located in 1,548,179-1,548,250 of the S. aureus genome (NC_007795.1), and the sequence of - 10 element is CCTTATAGT, - 35 element is TTTACT. The results above could lay a foundation for screening transcription factors involved in the expression of the efp gene and then exploring the transcriptional regulation mechanism of EF-P in S. aureus.</p>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expression of Staphylococcus aureus translation elongation factor P is regulated by a stress-inducible promotor.\",\"authors\":\"Xingxing Zheng, Xiuhui Sun, Weiwei Xiang, Haiyan Ni, Long Zou, Zhong-Er Long\",\"doi\":\"10.1007/s10482-024-01954-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Translation elongation factor P, expressed by the efp gene, is a conserved protein closely related to bacterial virulence and environmental stress regulation responses, however, little is known about the efp gene expression regulations. Here, the strain of Staphylococcus aureus subsp. aureus NCTC 8325 was taken as the research object and cultured under different conditions, including different culture temperatures, pH, and antibiotics, to study the expression of the efp gene in S. aureus by qRT-PCR, the results showed that the expression of the efp gene is upregulated under high temperature (40 °C), acidic (pH 5.4) or alkaline (pH 9.4) culture conditions, but upregulated early and downregulated later under the conditions of 0.5 MIC antibiotics (chloramphenicol at the final concentration of 2 μg/mL and vancomycin at the final concentration of 0.25 μg/mL), indicating that the efp promoter in S. aureus is inducible. The efp promoter sequence and structure in S. aureus were predicted by bioinformatics methods, and the predicted promoter was validated by constructing a promoter-probe vector and a series of promoter mutants, the results showed that the efp promoter sequence in S. aureus, named Pro, located in 1,548,179-1,548,250 of the S. aureus genome (NC_007795.1), and the sequence of - 10 element is CCTTATAGT, - 35 element is TTTACT. The results above could lay a foundation for screening transcription factors involved in the expression of the efp gene and then exploring the transcriptional regulation mechanism of EF-P in S. aureus.</p>\",\"PeriodicalId\":50746,\"journal\":{\"name\":\"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10482-024-01954-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10482-024-01954-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由efp基因表达的翻译延伸因子P是一种保守蛋白,与细菌的毒力和环境胁迫调控反应密切相关,但人们对efp基因的表达调控知之甚少。本文以金黄色葡萄球菌亚种 NCTC 8325 菌株为研究对象,在不同的培养温度、pH 值和抗生素等条件下进行培养,通过 qRT-PCR 研究金黄色葡萄球菌中 efp 基因的表达,结果表明在高温(40 °C)、酸性(pH 5.4)或碱性(pH 9.4)培养条件下efp基因表达上调,但在0.5 MIC抗生素(氯霉素终浓度为2 μg/mL,万古霉素终浓度为0.25 μg/mL)条件下,efp基因早期上调,后期下调,表明金黄色葡萄球菌中的efp启动子具有诱导性。通过生物信息学方法预测了金黄色葡萄球菌中efp启动子的序列和结构,并通过构建启动子-探针载体和一系列启动子突变体对预测的启动子进行了验证,结果表明金黄色葡萄球菌中的efp启动子序列名为Pro,位于金黄色葡萄球菌基因组(NC_007795.1)的1 548 179-1 548 250处,其中-10元件的序列为CCTTATAGT,-35元件的序列为TTTACT。上述结果为筛选参与efp基因表达的转录因子,进而探索金黄色葡萄球菌中EF-P的转录调控机制奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expression of Staphylococcus aureus translation elongation factor P is regulated by a stress-inducible promotor.

Translation elongation factor P, expressed by the efp gene, is a conserved protein closely related to bacterial virulence and environmental stress regulation responses, however, little is known about the efp gene expression regulations. Here, the strain of Staphylococcus aureus subsp. aureus NCTC 8325 was taken as the research object and cultured under different conditions, including different culture temperatures, pH, and antibiotics, to study the expression of the efp gene in S. aureus by qRT-PCR, the results showed that the expression of the efp gene is upregulated under high temperature (40 °C), acidic (pH 5.4) or alkaline (pH 9.4) culture conditions, but upregulated early and downregulated later under the conditions of 0.5 MIC antibiotics (chloramphenicol at the final concentration of 2 μg/mL and vancomycin at the final concentration of 0.25 μg/mL), indicating that the efp promoter in S. aureus is inducible. The efp promoter sequence and structure in S. aureus were predicted by bioinformatics methods, and the predicted promoter was validated by constructing a promoter-probe vector and a series of promoter mutants, the results showed that the efp promoter sequence in S. aureus, named Pro, located in 1,548,179-1,548,250 of the S. aureus genome (NC_007795.1), and the sequence of - 10 element is CCTTATAGT, - 35 element is TTTACT. The results above could lay a foundation for screening transcription factors involved in the expression of the efp gene and then exploring the transcriptional regulation mechanism of EF-P in S. aureus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
11.50%
发文量
104
审稿时长
3 months
期刊介绍: Antonie van Leeuwenhoek publishes papers on fundamental and applied aspects of microbiology. Topics of particular interest include: taxonomy, structure & development; biochemistry & molecular biology; physiology & metabolic studies; genetics; ecological studies; especially molecular ecology; marine microbiology; medical microbiology; molecular biological aspects of microbial pathogenesis and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信