多组学系统疫苗学资源,用于开发和测试免疫计算模型。

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2024-03-25 Epub Date: 2024-03-14 DOI:10.1016/j.crmeth.2024.100731
Pramod Shinde, Ferran Soldevila, Joaquin Reyna, Minori Aoki, Mikkel Rasmussen, Lisa Willemsen, Mari Kojima, Brendan Ha, Jason A Greenbaum, James A Overton, Hector Guzman-Orozco, Somayeh Nili, Shelby Orfield, Jeremy P Gygi, Ricardo da Silva Antunes, Alessandro Sette, Barry Grant, Lars Rønn Olsen, Anna Konstorum, Leying Guan, Ferhat Ay, Steven H Kleinstein, Bjoern Peters
{"title":"多组学系统疫苗学资源,用于开发和测试免疫计算模型。","authors":"Pramod Shinde, Ferran Soldevila, Joaquin Reyna, Minori Aoki, Mikkel Rasmussen, Lisa Willemsen, Mari Kojima, Brendan Ha, Jason A Greenbaum, James A Overton, Hector Guzman-Orozco, Somayeh Nili, Shelby Orfield, Jeremy P Gygi, Ricardo da Silva Antunes, Alessandro Sette, Barry Grant, Lars Rønn Olsen, Anna Konstorum, Leying Guan, Ferhat Ay, Steven H Kleinstein, Bjoern Peters","doi":"10.1016/j.crmeth.2024.100731","DOIUrl":null,"url":null,"abstract":"<p><p>Systems vaccinology studies have identified factors affecting individual vaccine responses, but comparing these findings is challenging due to varying study designs. To address this lack of reproducibility, we established a community resource for comparing Bordetella pertussis booster responses and to host annual contests for predicting patients' vaccination outcomes. We report here on our experiences with the \"dry-run\" prediction contest. We found that, among 20+ models adopted from the literature, the most successful model predicting vaccination outcome was based on age alone. This confirms our concerns about the reproducibility of conclusions between different vaccinology studies. Further, we found that, for newly trained models, handling of baseline information on the target variables was crucial. Overall, multiple co-inertia analysis gave the best results of the tested modeling approaches. Our goal is to engage community in these prediction challenges by making data and models available and opening a public contest in August 2024.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985234/pdf/","citationCount":"0","resultStr":"{\"title\":\"A multi-omics systems vaccinology resource to develop and test computational models of immunity.\",\"authors\":\"Pramod Shinde, Ferran Soldevila, Joaquin Reyna, Minori Aoki, Mikkel Rasmussen, Lisa Willemsen, Mari Kojima, Brendan Ha, Jason A Greenbaum, James A Overton, Hector Guzman-Orozco, Somayeh Nili, Shelby Orfield, Jeremy P Gygi, Ricardo da Silva Antunes, Alessandro Sette, Barry Grant, Lars Rønn Olsen, Anna Konstorum, Leying Guan, Ferhat Ay, Steven H Kleinstein, Bjoern Peters\",\"doi\":\"10.1016/j.crmeth.2024.100731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Systems vaccinology studies have identified factors affecting individual vaccine responses, but comparing these findings is challenging due to varying study designs. To address this lack of reproducibility, we established a community resource for comparing Bordetella pertussis booster responses and to host annual contests for predicting patients' vaccination outcomes. We report here on our experiences with the \\\"dry-run\\\" prediction contest. We found that, among 20+ models adopted from the literature, the most successful model predicting vaccination outcome was based on age alone. This confirms our concerns about the reproducibility of conclusions between different vaccinology studies. Further, we found that, for newly trained models, handling of baseline information on the target variables was crucial. Overall, multiple co-inertia analysis gave the best results of the tested modeling approaches. Our goal is to engage community in these prediction challenges by making data and models available and opening a public contest in August 2024.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985234/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2024.100731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

系统疫苗学研究已经确定了影响个体疫苗反应的因素,但由于研究设计各不相同,比较这些研究结果具有挑战性。为了解决缺乏可重复性的问题,我们建立了一个社区资源,用于比较百日咳博德特氏菌强化免疫反应,并举办年度预测患者疫苗接种结果竞赛。我们在此报告 "模拟 "预测竞赛的经验。我们发现,在从文献中采用的 20 多个模型中,最成功的疫苗接种结果预测模型仅基于年龄。这证实了我们对不同疫苗学研究结论可重复性的担忧。此外,我们还发现,对于新训练的模型来说,处理目标变量的基线信息至关重要。总之,在测试过的建模方法中,多重共惯性分析的结果最好。我们的目标是通过提供数据和模型以及在 2024 年 8 月举办公开竞赛,让社会各界参与到这些预测挑战中来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-omics systems vaccinology resource to develop and test computational models of immunity.

Systems vaccinology studies have identified factors affecting individual vaccine responses, but comparing these findings is challenging due to varying study designs. To address this lack of reproducibility, we established a community resource for comparing Bordetella pertussis booster responses and to host annual contests for predicting patients' vaccination outcomes. We report here on our experiences with the "dry-run" prediction contest. We found that, among 20+ models adopted from the literature, the most successful model predicting vaccination outcome was based on age alone. This confirms our concerns about the reproducibility of conclusions between different vaccinology studies. Further, we found that, for newly trained models, handling of baseline information on the target variables was crucial. Overall, multiple co-inertia analysis gave the best results of the tested modeling approaches. Our goal is to engage community in these prediction challenges by making data and models available and opening a public contest in August 2024.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信