{"title":"ASPTF:利用机器学习算法预测植物非生物胁迫响应转录因子的计算工具。","authors":"Upendra Kumar Pradhan , Anuradha Mahapatra , Sanchita Naha , Ajit Gupta , Rajender Parsad , Vijay Gahlaut , Surya Narayan Rath , Prabina Kumar Meher","doi":"10.1016/j.bbagen.2024.130597","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Abiotic stresses pose serious threat to the growth and yield of crop plants. Several studies suggest that in plants, transcription factors (TFs) are important regulators of gene expression, especially when it comes to coping with abiotic stresses. Therefore, it is crucial to identify TFs associated with abiotic stress response for breeding of abiotic stress tolerant crop cultivars.</p></div><div><h3>Methods</h3><p>Based on a machine learning framework, a computational model was envisaged to predict TFs associated with abiotic stress response in plants. To numerically encode TF sequences, four distinct sequence derived features were generated. The prediction was performed using ten shallow learning and four deep learning algorithms. For prediction using more pertinent and informative features, feature selection techniques were also employed.</p></div><div><h3>Results</h3><p>Using the features chosen by the light-gradient boosting machine-variable importance measure (LGBM-VIM), the LGBM achieved the highest cross-validation performance metrics (accuracy: 86.81%, auROC: 92.98%, and auPRC: 94.03%). Further evaluation of the proposed model (LGBM prediction method + LGBM-VIM selected features) was also done using an independent test dataset, where the accuracy, auROC and auPRC were observed 81.98%, 90.65% and 91.30%, respectively.</p></div><div><h3>Conclusions</h3><p>To facilitate the adoption of the proposed strategy by users, the approach was implemented as a prediction server called ASPTF, accessible at <span>https://iasri-sg.icar.gov.in/asptf/</span><svg><path></path></svg>. The developed approach and the corresponding web application are anticipated to supplement experimental methods in the identification of transcription factors (TFs) responsive to abiotic stress in plants.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ASPTF: A computational tool to predict abiotic stress-responsive transcription factors in plants by employing machine learning algorithms\",\"authors\":\"Upendra Kumar Pradhan , Anuradha Mahapatra , Sanchita Naha , Ajit Gupta , Rajender Parsad , Vijay Gahlaut , Surya Narayan Rath , Prabina Kumar Meher\",\"doi\":\"10.1016/j.bbagen.2024.130597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Abiotic stresses pose serious threat to the growth and yield of crop plants. Several studies suggest that in plants, transcription factors (TFs) are important regulators of gene expression, especially when it comes to coping with abiotic stresses. Therefore, it is crucial to identify TFs associated with abiotic stress response for breeding of abiotic stress tolerant crop cultivars.</p></div><div><h3>Methods</h3><p>Based on a machine learning framework, a computational model was envisaged to predict TFs associated with abiotic stress response in plants. To numerically encode TF sequences, four distinct sequence derived features were generated. The prediction was performed using ten shallow learning and four deep learning algorithms. For prediction using more pertinent and informative features, feature selection techniques were also employed.</p></div><div><h3>Results</h3><p>Using the features chosen by the light-gradient boosting machine-variable importance measure (LGBM-VIM), the LGBM achieved the highest cross-validation performance metrics (accuracy: 86.81%, auROC: 92.98%, and auPRC: 94.03%). Further evaluation of the proposed model (LGBM prediction method + LGBM-VIM selected features) was also done using an independent test dataset, where the accuracy, auROC and auPRC were observed 81.98%, 90.65% and 91.30%, respectively.</p></div><div><h3>Conclusions</h3><p>To facilitate the adoption of the proposed strategy by users, the approach was implemented as a prediction server called ASPTF, accessible at <span>https://iasri-sg.icar.gov.in/asptf/</span><svg><path></path></svg>. The developed approach and the corresponding web application are anticipated to supplement experimental methods in the identification of transcription factors (TFs) responsive to abiotic stress in plants.</p></div>\",\"PeriodicalId\":8800,\"journal\":{\"name\":\"Biochimica et biophysica acta. General subjects\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. General subjects\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304416524000400\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416524000400","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
ASPTF: A computational tool to predict abiotic stress-responsive transcription factors in plants by employing machine learning algorithms
Background
Abiotic stresses pose serious threat to the growth and yield of crop plants. Several studies suggest that in plants, transcription factors (TFs) are important regulators of gene expression, especially when it comes to coping with abiotic stresses. Therefore, it is crucial to identify TFs associated with abiotic stress response for breeding of abiotic stress tolerant crop cultivars.
Methods
Based on a machine learning framework, a computational model was envisaged to predict TFs associated with abiotic stress response in plants. To numerically encode TF sequences, four distinct sequence derived features were generated. The prediction was performed using ten shallow learning and four deep learning algorithms. For prediction using more pertinent and informative features, feature selection techniques were also employed.
Results
Using the features chosen by the light-gradient boosting machine-variable importance measure (LGBM-VIM), the LGBM achieved the highest cross-validation performance metrics (accuracy: 86.81%, auROC: 92.98%, and auPRC: 94.03%). Further evaluation of the proposed model (LGBM prediction method + LGBM-VIM selected features) was also done using an independent test dataset, where the accuracy, auROC and auPRC were observed 81.98%, 90.65% and 91.30%, respectively.
Conclusions
To facilitate the adoption of the proposed strategy by users, the approach was implemented as a prediction server called ASPTF, accessible at https://iasri-sg.icar.gov.in/asptf/. The developed approach and the corresponding web application are anticipated to supplement experimental methods in the identification of transcription factors (TFs) responsive to abiotic stress in plants.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.