{"title":"用微型计算机断层扫描描述未破裂颅内动脉瘤的三维壁厚分布。","authors":"Yasutaka Tobe, Takanobu Yagi, Koichi Kawamura, Kenta Suto, Yoichi Sawada, Yoshifumi Hayashi, Hirotaka Yoshida, Kazutoshi Nishitani, Yoshifumi Okada, Shigemi Kitahara, Mitsuo Umezu","doi":"10.1007/s10237-024-01835-5","DOIUrl":null,"url":null,"abstract":"<div><p>Aneurysmal rupture is associated with wall thinning, but the mechanism is poorly understood. This study aimed to characterize the three-dimensional wall-thickness distributions of unruptured intracranial aneurysms. Five aneurysmal tissues were investigated using micro-computed tomography. First, the wall thickness was related to the aneurysmal wall appearances during surgery. The median wall thicknesses of the translucent and non-translucent walls were 50.56 and 155.93 µm, respectively (<i>p</i> < 0.05) with significant variation in the non-translucent wall thicknesses (<i>p</i> < 0.05). The three-dimensional observations characterized the spatial variation of wall thicknesses. Thin walls showed a uniform thickness profile ranging from 10 to 40 µm, whereas thick walls presented a peaked thickness profile ranging from 300 to 500 µm. In transition walls, the profile undulated due to the formation of focal thin/thick spots. Overall, the aneurysmal wall thicknesses were strongly site-dependent and spatially varied by 10 to 40 times within individual cases. Aneurysmal walls are exposed to wall stress driven by blood pressure. In theory, the magnitude of wall stress is inversely proportional to wall thickness. Thus, the observed spatial variation of wall thickness may increase the spatial variation of wall stress to a similar extent. The irregular wall thickness may yield stress concentration. The observed thin walls and focal thin spots may be caused by excessive wall stresses at the range of mechanical failure inducing wall injuries, such as microscopic tears, during aneurysmal enlargement. The present results suggested that blood pressure (wall stress) may have a potential of acting as a trigger of aneurysmal wall injury.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 4","pages":"1229 - 1240"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341610/pdf/","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional wall-thickness distributions of unruptured intracranial aneurysms characterized by micro-computed tomography\",\"authors\":\"Yasutaka Tobe, Takanobu Yagi, Koichi Kawamura, Kenta Suto, Yoichi Sawada, Yoshifumi Hayashi, Hirotaka Yoshida, Kazutoshi Nishitani, Yoshifumi Okada, Shigemi Kitahara, Mitsuo Umezu\",\"doi\":\"10.1007/s10237-024-01835-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aneurysmal rupture is associated with wall thinning, but the mechanism is poorly understood. This study aimed to characterize the three-dimensional wall-thickness distributions of unruptured intracranial aneurysms. Five aneurysmal tissues were investigated using micro-computed tomography. First, the wall thickness was related to the aneurysmal wall appearances during surgery. The median wall thicknesses of the translucent and non-translucent walls were 50.56 and 155.93 µm, respectively (<i>p</i> < 0.05) with significant variation in the non-translucent wall thicknesses (<i>p</i> < 0.05). The three-dimensional observations characterized the spatial variation of wall thicknesses. Thin walls showed a uniform thickness profile ranging from 10 to 40 µm, whereas thick walls presented a peaked thickness profile ranging from 300 to 500 µm. In transition walls, the profile undulated due to the formation of focal thin/thick spots. Overall, the aneurysmal wall thicknesses were strongly site-dependent and spatially varied by 10 to 40 times within individual cases. Aneurysmal walls are exposed to wall stress driven by blood pressure. In theory, the magnitude of wall stress is inversely proportional to wall thickness. Thus, the observed spatial variation of wall thickness may increase the spatial variation of wall stress to a similar extent. The irregular wall thickness may yield stress concentration. The observed thin walls and focal thin spots may be caused by excessive wall stresses at the range of mechanical failure inducing wall injuries, such as microscopic tears, during aneurysmal enlargement. The present results suggested that blood pressure (wall stress) may have a potential of acting as a trigger of aneurysmal wall injury.</p></div>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\"23 4\",\"pages\":\"1229 - 1240\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341610/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10237-024-01835-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-024-01835-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Three-dimensional wall-thickness distributions of unruptured intracranial aneurysms characterized by micro-computed tomography
Aneurysmal rupture is associated with wall thinning, but the mechanism is poorly understood. This study aimed to characterize the three-dimensional wall-thickness distributions of unruptured intracranial aneurysms. Five aneurysmal tissues were investigated using micro-computed tomography. First, the wall thickness was related to the aneurysmal wall appearances during surgery. The median wall thicknesses of the translucent and non-translucent walls were 50.56 and 155.93 µm, respectively (p < 0.05) with significant variation in the non-translucent wall thicknesses (p < 0.05). The three-dimensional observations characterized the spatial variation of wall thicknesses. Thin walls showed a uniform thickness profile ranging from 10 to 40 µm, whereas thick walls presented a peaked thickness profile ranging from 300 to 500 µm. In transition walls, the profile undulated due to the formation of focal thin/thick spots. Overall, the aneurysmal wall thicknesses were strongly site-dependent and spatially varied by 10 to 40 times within individual cases. Aneurysmal walls are exposed to wall stress driven by blood pressure. In theory, the magnitude of wall stress is inversely proportional to wall thickness. Thus, the observed spatial variation of wall thickness may increase the spatial variation of wall stress to a similar extent. The irregular wall thickness may yield stress concentration. The observed thin walls and focal thin spots may be caused by excessive wall stresses at the range of mechanical failure inducing wall injuries, such as microscopic tears, during aneurysmal enlargement. The present results suggested that blood pressure (wall stress) may have a potential of acting as a trigger of aneurysmal wall injury.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.