用于彩色成像的灵活、可穿戴、无需电池的反向散射无线通信系统

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jun-Lin Zhan, Wei-Bing Lu, Cong Ding, Zhen Sun, Bu-Yun Yu, Lu Ju, Xin-Hua Liang, Zhao-Min Chen, Hao Chen, Yong-Hao Jia, Zhen-Guo Liu, Tie-Jun Cui
{"title":"用于彩色成像的灵活、可穿戴、无需电池的反向散射无线通信系统","authors":"Jun-Lin Zhan, Wei-Bing Lu, Cong Ding, Zhen Sun, Bu-Yun Yu, Lu Ju, Xin-Hua Liang, Zhao-Min Chen, Hao Chen, Yong-Hao Jia, Zhen-Guo Liu, Tie-Jun Cui","doi":"10.1038/s41528-024-00304-4","DOIUrl":null,"url":null,"abstract":"Wireless imaging, equipped with ultralow power wireless communications and energy harvesting (EH) capabilities, have emerged as battery-free and sustainable solutions. However, the challenge of implementing wireless colour imaging in wearable applications remains, primarily due to high power demands and the need to balance energy harvesting efficiency with device compactness. To address these issues, we propose a flexible and wearable battery-free backscatter wireless communication system specially designed for colour imaging. The system features a hybrid RF-solar EH array that efficiently harvests energy from both ambient RF and visible light energy, ensuring continuous operation in diverse environments. Moreover, flexible materials allow the working system to conform to the human body, ensuring comfort, user-friendliness, and safety. Furthermore, a compact design utilizing a shared-aperture antenna array for simultaneous wireless information and power transfer (SWIPT), coupled with an optically transparent stacked structure. This design not only optimizes space but also maintains the performance of both communication and EH processes. The proposed flexible and wearable systems for colour imaging would have potentially applications in environmental monitoring, object detection, and law enforcement recording. This approach demonstrates a sustainable and practical solution for the next generation of wearable, power-demanding devices.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-9"},"PeriodicalIF":12.3000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00304-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Flexible and wearable battery-free backscatter wireless communication system for colour imaging\",\"authors\":\"Jun-Lin Zhan, Wei-Bing Lu, Cong Ding, Zhen Sun, Bu-Yun Yu, Lu Ju, Xin-Hua Liang, Zhao-Min Chen, Hao Chen, Yong-Hao Jia, Zhen-Guo Liu, Tie-Jun Cui\",\"doi\":\"10.1038/s41528-024-00304-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless imaging, equipped with ultralow power wireless communications and energy harvesting (EH) capabilities, have emerged as battery-free and sustainable solutions. However, the challenge of implementing wireless colour imaging in wearable applications remains, primarily due to high power demands and the need to balance energy harvesting efficiency with device compactness. To address these issues, we propose a flexible and wearable battery-free backscatter wireless communication system specially designed for colour imaging. The system features a hybrid RF-solar EH array that efficiently harvests energy from both ambient RF and visible light energy, ensuring continuous operation in diverse environments. Moreover, flexible materials allow the working system to conform to the human body, ensuring comfort, user-friendliness, and safety. Furthermore, a compact design utilizing a shared-aperture antenna array for simultaneous wireless information and power transfer (SWIPT), coupled with an optically transparent stacked structure. This design not only optimizes space but also maintains the performance of both communication and EH processes. The proposed flexible and wearable systems for colour imaging would have potentially applications in environmental monitoring, object detection, and law enforcement recording. This approach demonstrates a sustainable and practical solution for the next generation of wearable, power-demanding devices.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-024-00304-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-024-00304-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00304-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

配备超低功耗无线通信和能量收集(EH)功能的无线成像技术已成为无电池和可持续的解决方案。然而,在可穿戴应用中实现无线彩色成像的挑战依然存在,这主要是由于高功率需求以及平衡能量收集效率和设备紧凑性的需要。为了解决这些问题,我们提出了一种专为彩色成像设计的灵活、可穿戴、无需电池的反向散射无线通信系统。该系统采用混合射频-太阳能 EH 阵列,可从环境射频和可见光能量中有效采集能量,确保在不同环境中持续工作。此外,柔性材料使工作系统能够贴合人体,确保舒适性、用户友好性和安全性。此外,利用共享孔径天线阵列进行同步无线信息和功率传输(SWIPT)的紧凑型设计与光学透明叠层结构相结合。这种设计不仅优化了空间,还保持了通信和 EH 过程的性能。所建议的灵活可穿戴彩色成像系统可应用于环境监测、物体探测和执法记录。这种方法为下一代耗电的可穿戴设备提供了一种可持续的实用解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flexible and wearable battery-free backscatter wireless communication system for colour imaging

Flexible and wearable battery-free backscatter wireless communication system for colour imaging

Flexible and wearable battery-free backscatter wireless communication system for colour imaging
Wireless imaging, equipped with ultralow power wireless communications and energy harvesting (EH) capabilities, have emerged as battery-free and sustainable solutions. However, the challenge of implementing wireless colour imaging in wearable applications remains, primarily due to high power demands and the need to balance energy harvesting efficiency with device compactness. To address these issues, we propose a flexible and wearable battery-free backscatter wireless communication system specially designed for colour imaging. The system features a hybrid RF-solar EH array that efficiently harvests energy from both ambient RF and visible light energy, ensuring continuous operation in diverse environments. Moreover, flexible materials allow the working system to conform to the human body, ensuring comfort, user-friendliness, and safety. Furthermore, a compact design utilizing a shared-aperture antenna array for simultaneous wireless information and power transfer (SWIPT), coupled with an optically transparent stacked structure. This design not only optimizes space but also maintains the performance of both communication and EH processes. The proposed flexible and wearable systems for colour imaging would have potentially applications in environmental monitoring, object detection, and law enforcement recording. This approach demonstrates a sustainable and practical solution for the next generation of wearable, power-demanding devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信