用于人机交互的多模式触觉传感和反馈触觉界面

IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY
Mingyu Kang, Cheol-Gu Gang, Sang-Kyu Ryu, Hyeon-Ju Kim, Da-Yeon Jeon, Soonjae Pyo
{"title":"用于人机交互的多模式触觉传感和反馈触觉界面","authors":"Mingyu Kang,&nbsp;Cheol-Gu Gang,&nbsp;Sang-Kyu Ryu,&nbsp;Hyeon-Ju Kim,&nbsp;Da-Yeon Jeon,&nbsp;Soonjae Pyo","doi":"10.1186/s40486-024-00199-w","DOIUrl":null,"url":null,"abstract":"<div><p>Novel sensing and actuation technologies have notably advanced haptic interfaces, paving the way for more immersive user experiences. We introduce a haptic system that transcends traditional pressure-based interfaces by delivering more comprehensive tactile sensations. This system provides an interactive combination of a robotic hand and haptic glove to operate devices within the wireless communication range. Each component is equipped with independent sensors and actuators, enabling real-time mirroring of user’s hand movements and the effective transmission of tactile information. Remarkably, the proposed system has a multimodal feedback mechanism based on both vibration motors and Peltier elements. This mechanism ensures a varied tactile experience encompassing pressure and temperature sensations. The accuracy of tactile feedback is meticulously calibrated according to experimental data, thereby enhancing the reliability of the system and user experience. The Peltier element for temperature feedback allows users to safely experience temperatures similar to those detected by the robotic hand. Potential applications of this system are wide ranging and include operations in hazardous environments and medical interventions. By providing realistic tactile sensations, our haptic system aims to improve both the performance and safety of workers in such critical sectors, thereby highlighting the great potential of advanced haptic technologies.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"12 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-024-00199-w","citationCount":"0","resultStr":"{\"title\":\"Haptic interface with multimodal tactile sensing and feedback for human–robot interaction\",\"authors\":\"Mingyu Kang,&nbsp;Cheol-Gu Gang,&nbsp;Sang-Kyu Ryu,&nbsp;Hyeon-Ju Kim,&nbsp;Da-Yeon Jeon,&nbsp;Soonjae Pyo\",\"doi\":\"10.1186/s40486-024-00199-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Novel sensing and actuation technologies have notably advanced haptic interfaces, paving the way for more immersive user experiences. We introduce a haptic system that transcends traditional pressure-based interfaces by delivering more comprehensive tactile sensations. This system provides an interactive combination of a robotic hand and haptic glove to operate devices within the wireless communication range. Each component is equipped with independent sensors and actuators, enabling real-time mirroring of user’s hand movements and the effective transmission of tactile information. Remarkably, the proposed system has a multimodal feedback mechanism based on both vibration motors and Peltier elements. This mechanism ensures a varied tactile experience encompassing pressure and temperature sensations. The accuracy of tactile feedback is meticulously calibrated according to experimental data, thereby enhancing the reliability of the system and user experience. The Peltier element for temperature feedback allows users to safely experience temperatures similar to those detected by the robotic hand. Potential applications of this system are wide ranging and include operations in hazardous environments and medical interventions. By providing realistic tactile sensations, our haptic system aims to improve both the performance and safety of workers in such critical sectors, thereby highlighting the great potential of advanced haptic technologies.</p></div>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-024-00199-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-024-00199-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-024-00199-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

新颖的传感和驱动技术显著推动了触觉界面的发展,为更身临其境的用户体验铺平了道路。我们介绍了一种触觉系统,它超越了传统的基于压力的界面,能提供更全面的触觉感受。该系统提供了机器人手和触觉手套的互动组合,可在无线通信范围内操作设备。每个组件都配备了独立的传感器和执行器,能够实时反映用户的手部动作,并有效传输触觉信息。值得注意的是,该系统具有基于振动电机和珀尔帖元件的多模式反馈机制。这种机制确保了包括压力和温度感觉在内的多种触觉体验。触觉反馈的精确度是根据实验数据精心校准的,从而提高了系统的可靠性和用户体验。用于温度反馈的珀尔帖(Peltier)元件可让用户安全地体验与机械手检测到的温度相似的温度。该系统的潜在应用范围很广,包括在危险环境中的操作和医疗干预。通过提供逼真的触觉,我们的触觉系统旨在提高此类关键领域工作人员的工作表现和安全性,从而凸显先进触觉技术的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Haptic interface with multimodal tactile sensing and feedback for human–robot interaction

Novel sensing and actuation technologies have notably advanced haptic interfaces, paving the way for more immersive user experiences. We introduce a haptic system that transcends traditional pressure-based interfaces by delivering more comprehensive tactile sensations. This system provides an interactive combination of a robotic hand and haptic glove to operate devices within the wireless communication range. Each component is equipped with independent sensors and actuators, enabling real-time mirroring of user’s hand movements and the effective transmission of tactile information. Remarkably, the proposed system has a multimodal feedback mechanism based on both vibration motors and Peltier elements. This mechanism ensures a varied tactile experience encompassing pressure and temperature sensations. The accuracy of tactile feedback is meticulously calibrated according to experimental data, thereby enhancing the reliability of the system and user experience. The Peltier element for temperature feedback allows users to safely experience temperatures similar to those detected by the robotic hand. Potential applications of this system are wide ranging and include operations in hazardous environments and medical interventions. By providing realistic tactile sensations, our haptic system aims to improve both the performance and safety of workers in such critical sectors, thereby highlighting the great potential of advanced haptic technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Systems Letters
Micro and Nano Systems Letters Engineering-Biomedical Engineering
CiteScore
10.60
自引率
5.60%
发文量
16
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信