有界多集的 Erdős-Ko-Rado 定理

IF 0.9 2区 数学 Q2 MATHEMATICS
Jiaqi Liao , Zequn Lv , Mengyu Cao , Mei Lu
{"title":"有界多集的 Erdős-Ko-Rado 定理","authors":"Jiaqi Liao ,&nbsp;Zequn Lv ,&nbsp;Mengyu Cao ,&nbsp;Mei Lu","doi":"10.1016/j.jcta.2024.105888","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>k</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi></math></span> be positive integers with <span><math><mi>k</mi><mo>⩾</mo><mn>2</mn></math></span>. A <em>k</em>-multiset of <span><math><msub><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow><mrow><mi>m</mi></mrow></msub></math></span> is a collection of <em>k</em> integers from the set <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> in which the integers can appear more than once but at most <em>m</em> times. A family of such <em>k</em>-multisets is called an intersecting family if every pair of <em>k</em>-multisets from the family have non-empty intersection. A finite sequence of real numbers <span><math><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> is said to be unimodal if there is some <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>, such that <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⩽</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⩽</mo><mo>…</mo><mo>⩽</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>⩽</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⩾</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⩾</mo><mo>…</mo><mo>⩾</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Given <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>k</mi></math></span>, denote <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span> as the coefficient of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> in the generating function <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msup><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>ℓ</mi></mrow></msup></math></span>, where <span><math><mn>1</mn><mo>⩽</mo><mi>ℓ</mi><mo>⩽</mo><mi>n</mi></math></span>. In this paper, we first show that the sequence of <span><math><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo></math></span> is unimodal. Then we use this as a tool to prove that the intersecting family in which every <em>k</em>-multiset contains a fixed element attains the maximum cardinality for <span><math><mi>n</mi><mo>⩾</mo><mi>k</mi><mo>+</mo><mrow><mo>⌈</mo><mi>k</mi><mo>/</mo><mi>m</mi><mo>⌉</mo></mrow></math></span>. In the special case when <span><math><mi>m</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>m</mi><mo>=</mo><mo>∞</mo></math></span>, our result gives rise to the famous Erdős-Ko-Rado Theorem and an unbounded multiset version for this problem given by Meagher and Purdy <span>[11]</span>, respectively. The main result in this paper can be viewed as a bounded multiset version of the Erdős-Ko-Rado Theorem.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erdős-Ko-Rado theorem for bounded multisets\",\"authors\":\"Jiaqi Liao ,&nbsp;Zequn Lv ,&nbsp;Mengyu Cao ,&nbsp;Mei Lu\",\"doi\":\"10.1016/j.jcta.2024.105888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>k</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi></math></span> be positive integers with <span><math><mi>k</mi><mo>⩾</mo><mn>2</mn></math></span>. A <em>k</em>-multiset of <span><math><msub><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow><mrow><mi>m</mi></mrow></msub></math></span> is a collection of <em>k</em> integers from the set <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> in which the integers can appear more than once but at most <em>m</em> times. A family of such <em>k</em>-multisets is called an intersecting family if every pair of <em>k</em>-multisets from the family have non-empty intersection. A finite sequence of real numbers <span><math><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> is said to be unimodal if there is some <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>, such that <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⩽</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⩽</mo><mo>…</mo><mo>⩽</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>⩽</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⩾</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⩾</mo><mo>…</mo><mo>⩾</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Given <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>k</mi></math></span>, denote <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span> as the coefficient of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> in the generating function <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msup><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>ℓ</mi></mrow></msup></math></span>, where <span><math><mn>1</mn><mo>⩽</mo><mi>ℓ</mi><mo>⩽</mo><mi>n</mi></math></span>. In this paper, we first show that the sequence of <span><math><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo></math></span> is unimodal. Then we use this as a tool to prove that the intersecting family in which every <em>k</em>-multiset contains a fixed element attains the maximum cardinality for <span><math><mi>n</mi><mo>⩾</mo><mi>k</mi><mo>+</mo><mrow><mo>⌈</mo><mi>k</mi><mo>/</mo><mi>m</mi><mo>⌉</mo></mrow></math></span>. In the special case when <span><math><mi>m</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>m</mi><mo>=</mo><mo>∞</mo></math></span>, our result gives rise to the famous Erdős-Ko-Rado Theorem and an unbounded multiset version for this problem given by Meagher and Purdy <span>[11]</span>, respectively. The main result in this paper can be viewed as a bounded multiset version of the Erdős-Ko-Rado Theorem.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009731652400027X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652400027X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 k,m,n 是 k⩾2 的正整数。一个 [n]m 的 k 多集是从集合 {1,2,...,n}中选出的 k 个整数的集合,其中的整数可以出现不止一次,但最多出现 m 次。如果族中的每一对 k 多集都有非空的交集,那么这样的 k 多集族称为交集族。如果存在某个 k∈{1,2,...,n},使得 a1⩽a2⩽...⩽ak-1⩽ak⩾ak+1⩾...⩾an,则称实数的有限序列 (a1,a2,...an) 为单模序列。给定 m,n,k,表示 Ck,ℓ 为 xk 在生成函数 (∑i=1mxi)ℓ 中的系数,其中 1⩽ℓ⩽n。在本文中,我们首先证明(Ck,1,Ck,2,...,Ck,n)序列是单峰的。然后,我们以此为工具证明,在 n⩾k+⌈k/m⌉ 的交集族中,每个 k 多集都包含一个固定元素,从而达到最大心数。在 m=1 和 m=∞ 的特殊情况下,我们的结果分别引出了著名的厄尔多斯-柯-拉多定理,以及 Meagher 和 Purdy [11] 所给出的该问题的无界多集版本。本文的主要结果可以看作是 Erdős-Ko-Rado 定理的有界多集版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Erdős-Ko-Rado theorem for bounded multisets

Let k,m,n be positive integers with k2. A k-multiset of [n]m is a collection of k integers from the set {1,2,,n} in which the integers can appear more than once but at most m times. A family of such k-multisets is called an intersecting family if every pair of k-multisets from the family have non-empty intersection. A finite sequence of real numbers (a1,a2,,an) is said to be unimodal if there is some k{1,2,,n}, such that a1a2ak1akak+1an. Given m,n,k, denote Ck, as the coefficient of xk in the generating function (i=1mxi), where 1n. In this paper, we first show that the sequence of (Ck,1,Ck,2,,Ck,n) is unimodal. Then we use this as a tool to prove that the intersecting family in which every k-multiset contains a fixed element attains the maximum cardinality for nk+k/m. In the special case when m=1 and m=, our result gives rise to the famous Erdős-Ko-Rado Theorem and an unbounded multiset version for this problem given by Meagher and Purdy [11], respectively. The main result in this paper can be viewed as a bounded multiset version of the Erdős-Ko-Rado Theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信