爪树的系统发生度

IF 0.9 2区 数学 Q2 MATHEMATICS
Rodica Andreea Dinu , Martin Vodička
{"title":"爪树的系统发生度","authors":"Rodica Andreea Dinu ,&nbsp;Martin Vodička","doi":"10.1016/j.jcta.2024.105886","DOIUrl":null,"url":null,"abstract":"<div><p>Group-based models appear in algebraic statistics as mathematical models coming from evolutionary biology, namely in the study of mutations of genomes. Motivated also by applications, we are interested in determining the algebraic degrees of the phylogenetic varieties coming from these models. These algebraic degrees are called <em>phylogenetic degrees</em>. In this paper, we compute the phylogenetic degree of the variety <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> with <span><math><mi>G</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span> and any <em>n</em>-claw tree. As these varieties are toric, computing their phylogenetic degree relies on computing the volume of their associated polytopes <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>. We apply combinatorial methods and we give concrete formulas for these volumes.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105886"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000256/pdfft?md5=ffe34f8c1bb09972f0075bfe4ea95627&pid=1-s2.0-S0097316524000256-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Phylogenetic degrees for claw trees\",\"authors\":\"Rodica Andreea Dinu ,&nbsp;Martin Vodička\",\"doi\":\"10.1016/j.jcta.2024.105886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Group-based models appear in algebraic statistics as mathematical models coming from evolutionary biology, namely in the study of mutations of genomes. Motivated also by applications, we are interested in determining the algebraic degrees of the phylogenetic varieties coming from these models. These algebraic degrees are called <em>phylogenetic degrees</em>. In this paper, we compute the phylogenetic degree of the variety <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> with <span><math><mi>G</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span> and any <em>n</em>-claw tree. As these varieties are toric, computing their phylogenetic degree relies on computing the volume of their associated polytopes <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>. We apply combinatorial methods and we give concrete formulas for these volumes.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"206 \",\"pages\":\"Article 105886\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000256/pdfft?md5=ffe34f8c1bb09972f0075bfe4ea95627&pid=1-s2.0-S0097316524000256-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000256\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000256","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

基于组的模型作为进化生物学的数学模型出现在代数统计学中,即基因组突变的研究中。同样是受应用的驱使,我们对确定这些模型产生的系统发育品种的代数度感兴趣。这些代数度被称为系统发生度。在本文中,我们将计算G∈{Z2,Z2×Z2,Z3}和任意n棵爪树的XG,n的系统发生度。由于这些多面体是环状的,计算它们的系统发生度依赖于计算它们相关的多面体 PG,n 的体积。我们运用组合方法,给出了这些体积的具体公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phylogenetic degrees for claw trees

Group-based models appear in algebraic statistics as mathematical models coming from evolutionary biology, namely in the study of mutations of genomes. Motivated also by applications, we are interested in determining the algebraic degrees of the phylogenetic varieties coming from these models. These algebraic degrees are called phylogenetic degrees. In this paper, we compute the phylogenetic degree of the variety XG,n with G{Z2,Z2×Z2,Z3} and any n-claw tree. As these varieties are toric, computing their phylogenetic degree relies on computing the volume of their associated polytopes PG,n. We apply combinatorial methods and we give concrete formulas for these volumes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信