Yuelyu Ji, Yuhe Gao, Runxue Bao, Qi Li, Disheng Liu, Yiming Sun, Ye Ye
{"title":"利用多源迁移学习预测 COVID-19 患者的急诊室复诊率。","authors":"Yuelyu Ji, Yuhe Gao, Runxue Bao, Qi Li, Disheng Liu, Yiming Sun, Ye Ye","doi":"10.1109/ICHI57859.2023.00028","DOIUrl":null,"url":null,"abstract":"<p><p>The coronavirus disease 2019 (COVID-19) has led to a global pandemic of significant severity. In addition to its high level of contagiousness, COVID-19 can have a heterogeneous clinical course, ranging from asymptomatic carriers to severe and potentially life-threatening health complications. Many patients have to revisit the emergency room (ER) within a short time after discharge, which significantly increases the workload for medical staff. Early identification of such patients is crucial for helping physicians focus on treating life-threatening cases. In this study, we obtained Electronic Health Records (EHRs) of 3,210 encounters from 13 affiliated ERs within the University of Pittsburgh Medical Center between March 2020 and January 2021. We leveraged a Natural Language Processing technique, ScispaCy, to extract clinical concepts and used the 1001 most frequent concepts to develop 7-day revisit models for COVID-19 patients in ERs. The research data we collected were obtained from 13 ERs, which may have distributional differences that could affect the model development. To address this issue, we employed a classic deep transfer learning method called the Domain Adversarial Neural Network (DANN) and evaluated different modeling strategies, including the Multi-DANN algorithm (which considers the source differences), the Single-DANN algorithm (which doesn't consider the source differences), and three baseline methods: using only source data, using only target data, and using a mixture of source and target data. Results showed that the Multi-DANN models outperformed the Single-DANN models and baseline models in predicting revisits of COVID-19 patients to the ER within 7 days after discharge (median AUROC = 0.8 vs. 0.5). Notably, the Multi-DANN strategy effectively addressed the heterogeneity among multiple source domains and improved the adaptation of source data to the target domain. Moreover, the high performance of Multi-DANN models indicates that EHRs are informative for developing a prediction model to identify COVID-19 patients who are very likely to revisit an ER within 7 days after discharge.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2023 ","pages":"138-144"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939709/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prediction of COVID-19 Patients' Emergency Room Revisit using Multi-Source Transfer Learning.\",\"authors\":\"Yuelyu Ji, Yuhe Gao, Runxue Bao, Qi Li, Disheng Liu, Yiming Sun, Ye Ye\",\"doi\":\"10.1109/ICHI57859.2023.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The coronavirus disease 2019 (COVID-19) has led to a global pandemic of significant severity. In addition to its high level of contagiousness, COVID-19 can have a heterogeneous clinical course, ranging from asymptomatic carriers to severe and potentially life-threatening health complications. Many patients have to revisit the emergency room (ER) within a short time after discharge, which significantly increases the workload for medical staff. Early identification of such patients is crucial for helping physicians focus on treating life-threatening cases. In this study, we obtained Electronic Health Records (EHRs) of 3,210 encounters from 13 affiliated ERs within the University of Pittsburgh Medical Center between March 2020 and January 2021. We leveraged a Natural Language Processing technique, ScispaCy, to extract clinical concepts and used the 1001 most frequent concepts to develop 7-day revisit models for COVID-19 patients in ERs. The research data we collected were obtained from 13 ERs, which may have distributional differences that could affect the model development. To address this issue, we employed a classic deep transfer learning method called the Domain Adversarial Neural Network (DANN) and evaluated different modeling strategies, including the Multi-DANN algorithm (which considers the source differences), the Single-DANN algorithm (which doesn't consider the source differences), and three baseline methods: using only source data, using only target data, and using a mixture of source and target data. Results showed that the Multi-DANN models outperformed the Single-DANN models and baseline models in predicting revisits of COVID-19 patients to the ER within 7 days after discharge (median AUROC = 0.8 vs. 0.5). Notably, the Multi-DANN strategy effectively addressed the heterogeneity among multiple source domains and improved the adaptation of source data to the target domain. Moreover, the high performance of Multi-DANN models indicates that EHRs are informative for developing a prediction model to identify COVID-19 patients who are very likely to revisit an ER within 7 days after discharge.</p>\",\"PeriodicalId\":73284,\"journal\":{\"name\":\"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics\",\"volume\":\"2023 \",\"pages\":\"138-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939709/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHI57859.2023.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHI57859.2023.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of COVID-19 Patients' Emergency Room Revisit using Multi-Source Transfer Learning.
The coronavirus disease 2019 (COVID-19) has led to a global pandemic of significant severity. In addition to its high level of contagiousness, COVID-19 can have a heterogeneous clinical course, ranging from asymptomatic carriers to severe and potentially life-threatening health complications. Many patients have to revisit the emergency room (ER) within a short time after discharge, which significantly increases the workload for medical staff. Early identification of such patients is crucial for helping physicians focus on treating life-threatening cases. In this study, we obtained Electronic Health Records (EHRs) of 3,210 encounters from 13 affiliated ERs within the University of Pittsburgh Medical Center between March 2020 and January 2021. We leveraged a Natural Language Processing technique, ScispaCy, to extract clinical concepts and used the 1001 most frequent concepts to develop 7-day revisit models for COVID-19 patients in ERs. The research data we collected were obtained from 13 ERs, which may have distributional differences that could affect the model development. To address this issue, we employed a classic deep transfer learning method called the Domain Adversarial Neural Network (DANN) and evaluated different modeling strategies, including the Multi-DANN algorithm (which considers the source differences), the Single-DANN algorithm (which doesn't consider the source differences), and three baseline methods: using only source data, using only target data, and using a mixture of source and target data. Results showed that the Multi-DANN models outperformed the Single-DANN models and baseline models in predicting revisits of COVID-19 patients to the ER within 7 days after discharge (median AUROC = 0.8 vs. 0.5). Notably, the Multi-DANN strategy effectively addressed the heterogeneity among multiple source domains and improved the adaptation of source data to the target domain. Moreover, the high performance of Multi-DANN models indicates that EHRs are informative for developing a prediction model to identify COVID-19 patients who are very likely to revisit an ER within 7 days after discharge.