{"title":"逻辑判断电路与防水超薄膜 PEDOT:PSS 电极用于无创心电图测量。","authors":"Kewei Song, Kayo Hirose, Kioto Niitsu, Tsubasa Sui, Hiroto Kojima, Toshinori Fujie, Shinjiro Umezu","doi":"10.1186/s11671-024-03988-9","DOIUrl":null,"url":null,"abstract":"<p><p>Heart disease-related deaths have increased in recent decades, with most patients dying of sudden cardiac arrest. In such instances, the effect of regular electrocardiogram (ECG) measurements is minimal. Therefore, long-term ECG monitoring has become increasingly important. In this paper, we report a non-adhesive high accuracy ECG monitoring system that can be used in various scenarios without interfering with daily activities. The ECG ultra-thin film electrode is made by water-resistant material based on poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate) (PEDOT: PSS) electrode doped with ethylene glycol (EG) and xylitol, to improve the noise signal caused by sweat. The optimal ratio of the three ingredients of PEDOT: PSS/xylitol/EG was determined experimentally to accommodate the ECG monitoring. By using the proposed selectively closed multi-channel single-lead logic circuit, the noise of ECG signal received from the proposed film electrode can be successfully reduced during broad-area electrode measurements, thus to improve ECG measurement accuracy.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"45"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940549/pdf/","citationCount":"0","resultStr":"{\"title\":\"A combination of logical judging circuit and water-resistant ultrathin film PEDOT: PSS electrode for noninvasive ECG measurement.\",\"authors\":\"Kewei Song, Kayo Hirose, Kioto Niitsu, Tsubasa Sui, Hiroto Kojima, Toshinori Fujie, Shinjiro Umezu\",\"doi\":\"10.1186/s11671-024-03988-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heart disease-related deaths have increased in recent decades, with most patients dying of sudden cardiac arrest. In such instances, the effect of regular electrocardiogram (ECG) measurements is minimal. Therefore, long-term ECG monitoring has become increasingly important. In this paper, we report a non-adhesive high accuracy ECG monitoring system that can be used in various scenarios without interfering with daily activities. The ECG ultra-thin film electrode is made by water-resistant material based on poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate) (PEDOT: PSS) electrode doped with ethylene glycol (EG) and xylitol, to improve the noise signal caused by sweat. The optimal ratio of the three ingredients of PEDOT: PSS/xylitol/EG was determined experimentally to accommodate the ECG monitoring. By using the proposed selectively closed multi-channel single-lead logic circuit, the noise of ECG signal received from the proposed film electrode can be successfully reduced during broad-area electrode measurements, thus to improve ECG measurement accuracy.</p>\",\"PeriodicalId\":72828,\"journal\":{\"name\":\"Discover nano\",\"volume\":\"19 1\",\"pages\":\"45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover nano\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s11671-024-03988-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-024-03988-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A combination of logical judging circuit and water-resistant ultrathin film PEDOT: PSS electrode for noninvasive ECG measurement.
Heart disease-related deaths have increased in recent decades, with most patients dying of sudden cardiac arrest. In such instances, the effect of regular electrocardiogram (ECG) measurements is minimal. Therefore, long-term ECG monitoring has become increasingly important. In this paper, we report a non-adhesive high accuracy ECG monitoring system that can be used in various scenarios without interfering with daily activities. The ECG ultra-thin film electrode is made by water-resistant material based on poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate) (PEDOT: PSS) electrode doped with ethylene glycol (EG) and xylitol, to improve the noise signal caused by sweat. The optimal ratio of the three ingredients of PEDOT: PSS/xylitol/EG was determined experimentally to accommodate the ECG monitoring. By using the proposed selectively closed multi-channel single-lead logic circuit, the noise of ECG signal received from the proposed film electrode can be successfully reduced during broad-area electrode measurements, thus to improve ECG measurement accuracy.