B-1a 细胞清除 NETs 以减轻败血症。

IF 3.6 3区 医学 Q3 CELL BIOLOGY
Kensuke Murata, Atsushi Murao, Chuyi Tan, Ping Wang, Monowar Aziz
{"title":"B-1a 细胞清除 NETs 以减轻败血症。","authors":"Kensuke Murata, Atsushi Murao, Chuyi Tan, Ping Wang, Monowar Aziz","doi":"10.1093/jleuko/qiae066","DOIUrl":null,"url":null,"abstract":"<p><p>B-1a cells, a regulatory subset of B lymphocytes, produce natural IgM and interleukin-10. Neutrophil extracellular traps (NETs) play a crucial role in pathogen defense, but their excessive formation during sepsis can cause further inflammation and tissue damage. In sepsis, extracellular cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern, is released to induce NET formation. We hypothesize that B-1a cells clear NETs to prevent sepsis-induced injury. Sepsis in mice was induced by injecting 1 × 107 and 5 × 107 colony-forming units of Escherichia coli intraperitoneally. After 4 and 20 h, we assessed the number of B-1a cells in the peritoneal cavity using flow cytometry. Our results showed that the number of peritoneal B-1a cells was significantly decreased in E. coli sepsis mice. Importantly, replenishing B-1a cells via intraperitoneal injection in sepsis mice significantly decreased NETs in peritoneal neutrophils. We also observed a decrease in serum inflammation and injury markers and a significant increase in the overall survival rate in B-1a cell-treated septic mice. To understand the mechanism, we cocultured bone marrow-derived neutrophils with peritoneal B-1a cells in a contact or noncontact condition using an insert and stimulated them with eCIRP. After 4 h, we found that eCIRP significantly increased NET formation in bone marrow-derived neutrophils. Interestingly, we observed that B-1a cells inhibited NETs by 67% in a contact-dependent manner. Surprisingly, when B-1a cells were cultured in inserts, there was no significant decrease in NET formation, suggesting that direct cell-to-cell contact is crucial for this inhibitory effect. We further determined that B-1a cells promoted NET phagocytosis, and this was mediated through natural IgM, as blocking the IgM receptor attenuated the engulfment of NETs by B-1a cells. Finally, we identified that following their engulfment, NETs were localized into the lysosomal compartment for lysis. Thus, our study suggests that B-1a cells decrease NET content in eCIRP-treated neutrophils and E. coli sepsis mice.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367732/pdf/","citationCount":"0","resultStr":"{\"title\":\"B-1a cells scavenge NETs to attenuate sepsis.\",\"authors\":\"Kensuke Murata, Atsushi Murao, Chuyi Tan, Ping Wang, Monowar Aziz\",\"doi\":\"10.1093/jleuko/qiae066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>B-1a cells, a regulatory subset of B lymphocytes, produce natural IgM and interleukin-10. Neutrophil extracellular traps (NETs) play a crucial role in pathogen defense, but their excessive formation during sepsis can cause further inflammation and tissue damage. In sepsis, extracellular cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern, is released to induce NET formation. We hypothesize that B-1a cells clear NETs to prevent sepsis-induced injury. Sepsis in mice was induced by injecting 1 × 107 and 5 × 107 colony-forming units of Escherichia coli intraperitoneally. After 4 and 20 h, we assessed the number of B-1a cells in the peritoneal cavity using flow cytometry. Our results showed that the number of peritoneal B-1a cells was significantly decreased in E. coli sepsis mice. Importantly, replenishing B-1a cells via intraperitoneal injection in sepsis mice significantly decreased NETs in peritoneal neutrophils. We also observed a decrease in serum inflammation and injury markers and a significant increase in the overall survival rate in B-1a cell-treated septic mice. To understand the mechanism, we cocultured bone marrow-derived neutrophils with peritoneal B-1a cells in a contact or noncontact condition using an insert and stimulated them with eCIRP. After 4 h, we found that eCIRP significantly increased NET formation in bone marrow-derived neutrophils. Interestingly, we observed that B-1a cells inhibited NETs by 67% in a contact-dependent manner. Surprisingly, when B-1a cells were cultured in inserts, there was no significant decrease in NET formation, suggesting that direct cell-to-cell contact is crucial for this inhibitory effect. We further determined that B-1a cells promoted NET phagocytosis, and this was mediated through natural IgM, as blocking the IgM receptor attenuated the engulfment of NETs by B-1a cells. Finally, we identified that following their engulfment, NETs were localized into the lysosomal compartment for lysis. Thus, our study suggests that B-1a cells decrease NET content in eCIRP-treated neutrophils and E. coli sepsis mice.</p>\",\"PeriodicalId\":16186,\"journal\":{\"name\":\"Journal of Leukocyte Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367732/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Leukocyte Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jleuko/qiae066\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiae066","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

B-1a 细胞是 B 淋巴细胞的调节亚群,可产生天然 IgM 和 IL-10。中性粒细胞胞外捕获物(NET)在病原体防御中起着至关重要的作用,但它们在败血症期间的过度形成会导致进一步的炎症和组织损伤。在败血症中,细胞外冷诱导 RNA 结合蛋白(eCIRP)这种与损伤相关的分子模式被释放出来,诱导 NET 的形成。我们假设B-1a细胞能清除NET以防止败血症引起的损伤。通过腹腔注射 1 × 107 和 5 × 107 CFU 大肠杆菌诱发小鼠败血症。4 小时和 20 小时后,我们使用流式细胞术评估了腹腔中 B-1a 细胞的数量。结果显示,大肠杆菌败血症小鼠腹腔中的 B-1a 细胞数量明显减少。重要的是,在败血症小鼠体内通过静脉注射补充 B-1a 细胞可显著减少腹膜中性粒细胞中的 NETs。我们还观察到,经 B-1a 细胞处理的脓毒症小鼠血清炎症和损伤标志物减少,总体存活率显著提高。为了解其机理,我们使用插入物在接触或非接触条件下将骨髓来源的中性粒细胞(BMDNs)与腹腔 B-1a 细胞共同培养,并用 eCIRP 对其进行刺激。4 小时后,我们发现 eCIRP 显著增加了 BMDNs 中 NET 的形成。有趣的是,我们观察到 B-1a 细胞以接触依赖的方式抑制了 67% 的 NET。令人惊讶的是,当将 B-1a 细胞培养在插入物中时,NET 的形成并没有明显减少,这表明细胞间的直接接触对这种抑制作用至关重要。我们进一步确定,B-1a 细胞促进了 NET 的吞噬,而这是通过天然 IgM 介导的,因为阻断 IgM 受体会减少 B-1a 细胞对 NET 的吞噬。最后,我们还发现,NET 在被吞噬后会进入溶酶体区进行溶解。因此,我们的研究表明,B-1a 细胞可减少 eCIRP 处理的中性粒细胞和大肠杆菌败血症小鼠体内的 NET 含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
B-1a cells scavenge NETs to attenuate sepsis.

B-1a cells, a regulatory subset of B lymphocytes, produce natural IgM and interleukin-10. Neutrophil extracellular traps (NETs) play a crucial role in pathogen defense, but their excessive formation during sepsis can cause further inflammation and tissue damage. In sepsis, extracellular cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern, is released to induce NET formation. We hypothesize that B-1a cells clear NETs to prevent sepsis-induced injury. Sepsis in mice was induced by injecting 1 × 107 and 5 × 107 colony-forming units of Escherichia coli intraperitoneally. After 4 and 20 h, we assessed the number of B-1a cells in the peritoneal cavity using flow cytometry. Our results showed that the number of peritoneal B-1a cells was significantly decreased in E. coli sepsis mice. Importantly, replenishing B-1a cells via intraperitoneal injection in sepsis mice significantly decreased NETs in peritoneal neutrophils. We also observed a decrease in serum inflammation and injury markers and a significant increase in the overall survival rate in B-1a cell-treated septic mice. To understand the mechanism, we cocultured bone marrow-derived neutrophils with peritoneal B-1a cells in a contact or noncontact condition using an insert and stimulated them with eCIRP. After 4 h, we found that eCIRP significantly increased NET formation in bone marrow-derived neutrophils. Interestingly, we observed that B-1a cells inhibited NETs by 67% in a contact-dependent manner. Surprisingly, when B-1a cells were cultured in inserts, there was no significant decrease in NET formation, suggesting that direct cell-to-cell contact is crucial for this inhibitory effect. We further determined that B-1a cells promoted NET phagocytosis, and this was mediated through natural IgM, as blocking the IgM receptor attenuated the engulfment of NETs by B-1a cells. Finally, we identified that following their engulfment, NETs were localized into the lysosomal compartment for lysis. Thus, our study suggests that B-1a cells decrease NET content in eCIRP-treated neutrophils and E. coli sepsis mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Leukocyte Biology
Journal of Leukocyte Biology 医学-免疫学
CiteScore
11.50
自引率
0.00%
发文量
358
审稿时长
2 months
期刊介绍: JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信