Jung Hun Lee, Sang-Gyu Kim, Kyung-Min Jang, Kyoungmin Shin, Hyeonku Jin, Dae-Wi Kim, Byeong Chul Jeong, Sang Hee Lee
{"title":"阐明金属-β-内酰胺酶抑制剂的关键化学分子并确定目标金属-β-内酰胺酶的优先次序。","authors":"Jung Hun Lee, Sang-Gyu Kim, Kyung-Min Jang, Kyoungmin Shin, Hyeonku Jin, Dae-Wi Kim, Byeong Chul Jeong, Sang Hee Lee","doi":"10.1080/14756366.2024.2318830","DOIUrl":null,"url":null,"abstract":"<p><p>The urgent demand for effective countermeasures against metallo-β-lactamases (MBLs) necessitates development of novel metallo-β-lactamase inhibitors (MBLIs). This study is dedicated to identifying critical chemical moieties within previously developed MBLIs, and critical MBLs should serve as the target in MBLI evaluations. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), a systematic literature analysis was conducted, and the NCBI RefSeq genome database was exploited to access the abundance profile and taxonomic distribution of MBLs and their variant types. Through the implementation of two distinct systematic approaches, we elucidated critical chemical moieties of MBLIs, providing pivotal information for rational drug design. We also prioritised MBLs and their variant types, highlighting the imperative need for comprehensive testing to ensure the potency and efficacy of the newly developed MBLIs. This approach contributes valuable information to advance the field of antimicrobial drug discovery.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946278/pdf/","citationCount":"0","resultStr":"{\"title\":\"Elucidation of critical chemical moieties of metallo-β-lactamase inhibitors and prioritisation of target metallo-β-lactamases.\",\"authors\":\"Jung Hun Lee, Sang-Gyu Kim, Kyung-Min Jang, Kyoungmin Shin, Hyeonku Jin, Dae-Wi Kim, Byeong Chul Jeong, Sang Hee Lee\",\"doi\":\"10.1080/14756366.2024.2318830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The urgent demand for effective countermeasures against metallo-β-lactamases (MBLs) necessitates development of novel metallo-β-lactamase inhibitors (MBLIs). This study is dedicated to identifying critical chemical moieties within previously developed MBLIs, and critical MBLs should serve as the target in MBLI evaluations. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), a systematic literature analysis was conducted, and the NCBI RefSeq genome database was exploited to access the abundance profile and taxonomic distribution of MBLs and their variant types. Through the implementation of two distinct systematic approaches, we elucidated critical chemical moieties of MBLIs, providing pivotal information for rational drug design. We also prioritised MBLs and their variant types, highlighting the imperative need for comprehensive testing to ensure the potency and efficacy of the newly developed MBLIs. This approach contributes valuable information to advance the field of antimicrobial drug discovery.</p>\",\"PeriodicalId\":15769,\"journal\":{\"name\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946278/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14756366.2024.2318830\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2024.2318830","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Elucidation of critical chemical moieties of metallo-β-lactamase inhibitors and prioritisation of target metallo-β-lactamases.
The urgent demand for effective countermeasures against metallo-β-lactamases (MBLs) necessitates development of novel metallo-β-lactamase inhibitors (MBLIs). This study is dedicated to identifying critical chemical moieties within previously developed MBLIs, and critical MBLs should serve as the target in MBLI evaluations. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), a systematic literature analysis was conducted, and the NCBI RefSeq genome database was exploited to access the abundance profile and taxonomic distribution of MBLs and their variant types. Through the implementation of two distinct systematic approaches, we elucidated critical chemical moieties of MBLIs, providing pivotal information for rational drug design. We also prioritised MBLs and their variant types, highlighting the imperative need for comprehensive testing to ensure the potency and efficacy of the newly developed MBLIs. This approach contributes valuable information to advance the field of antimicrobial drug discovery.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.