抑制 Beclin1 依赖性自噬使 PTC 细胞对 ABT737 诱导的死亡敏感。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2024-03-04 eCollection Date: 2024-01-01 DOI:10.1590/1678-4685-GMB-2022-0170
Ning Hu, Yanhua Tian, Yanmei Song, Leilei Zang
{"title":"抑制 Beclin1 依赖性自噬使 PTC 细胞对 ABT737 诱导的死亡敏感。","authors":"Ning Hu, Yanhua Tian, Yanmei Song, Leilei Zang","doi":"10.1590/1678-4685-GMB-2022-0170","DOIUrl":null,"url":null,"abstract":"<p><p>ABT737 is used as a specific BCL2 inhibitor, which can treat papillary thyroid carcinoma (PTC). However, the effect of ABT737 on PTC cell apoptosis is limited. Moreover, BCL2 inhibition causes the activation of Beclin1-dependent autophagy. Our study aimed to explore the effects of autophagy and Beclin1 on ABT737 efficacy in PTC. The experimental data showed that ABT737 synchronously enhanced autophagic activity and apoptosis level in PTC cells. ABT737 also promoted the dissociation of BCL2-Beclin1 and BCL2-Bax complexes. Autophagy inhibitors, Bafilomycin A1 and 3-MA, enhanced the inhibitory effect of ABT737 on the survival and function in PTC cells. Consistently, autophagy inhibition with Beclin1 pharmacological inhibitor (spautin-1) also enhanced the efficacy of ABT737. Additionally, ABT737 at low-dose promoted LC3 conversion in PTC cells, and did not affect PTC cell apoptosis and survival. However, The efficacy of low-dose of ABT737 in PTC cell apoptosis and survival was displayed with the addition of Bafilomycin A1, 3-MA or spautin-1. In conclusion, the limited role of ABT737 in PTC cell apoptosis is attributed to its promoting effect on Beclin1-dependent autophagy. Therefore, autophagy inhibition based on Beclin1 downregulation can enhance the sensitivity of PTC cells to ABT737-induced death.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10941729/pdf/","citationCount":"0","resultStr":"{\"title\":\"The inhibition of Beclin1-dependent autophagy sensitizes PTC cells to ABT737-induced death.\",\"authors\":\"Ning Hu, Yanhua Tian, Yanmei Song, Leilei Zang\",\"doi\":\"10.1590/1678-4685-GMB-2022-0170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ABT737 is used as a specific BCL2 inhibitor, which can treat papillary thyroid carcinoma (PTC). However, the effect of ABT737 on PTC cell apoptosis is limited. Moreover, BCL2 inhibition causes the activation of Beclin1-dependent autophagy. Our study aimed to explore the effects of autophagy and Beclin1 on ABT737 efficacy in PTC. The experimental data showed that ABT737 synchronously enhanced autophagic activity and apoptosis level in PTC cells. ABT737 also promoted the dissociation of BCL2-Beclin1 and BCL2-Bax complexes. Autophagy inhibitors, Bafilomycin A1 and 3-MA, enhanced the inhibitory effect of ABT737 on the survival and function in PTC cells. Consistently, autophagy inhibition with Beclin1 pharmacological inhibitor (spautin-1) also enhanced the efficacy of ABT737. Additionally, ABT737 at low-dose promoted LC3 conversion in PTC cells, and did not affect PTC cell apoptosis and survival. However, The efficacy of low-dose of ABT737 in PTC cell apoptosis and survival was displayed with the addition of Bafilomycin A1, 3-MA or spautin-1. In conclusion, the limited role of ABT737 in PTC cell apoptosis is attributed to its promoting effect on Beclin1-dependent autophagy. Therefore, autophagy inhibition based on Beclin1 downregulation can enhance the sensitivity of PTC cells to ABT737-induced death.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10941729/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1590/1678-4685-GMB-2022-0170\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1590/1678-4685-GMB-2022-0170","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

ABT737是一种特异性BCL2抑制剂,可用于治疗甲状腺乳头状癌(PTC)。然而,ABT737对PTC细胞凋亡的影响有限。此外,BCL2抑制会激活依赖于Beclin1的自噬。我们的研究旨在探讨自噬和Beclin1对ABT737在PTC中疗效的影响。实验数据显示,ABT737能同步增强PTC细胞的自噬活性和凋亡水平。ABT737还能促进BCL2-Beclin1和BCL2-Bax复合物的解离。自噬抑制剂巴佛洛霉素 A1 和 3-MA 增强了 ABT737 对 PTC 细胞存活和功能的抑制作用。同样,用Beclin1药理抑制剂(spautin-1)抑制自噬也增强了ABT737的疗效。此外,低剂量的 ABT737 还能促进 PTC 细胞中 LC3 的转化,并且不影响 PTC 细胞的凋亡和存活。然而,添加巴佛洛霉素 A1、3-MA 或 spautin-1 后,低剂量 ABT737 对 PTC 细胞凋亡和存活的疗效就会显现出来。总之,ABT737 对 PTC 细胞凋亡的有限作用归因于其对依赖 Beclin1 的自噬的促进作用。因此,基于下调 Beclin1 的自噬抑制可提高 PTC 细胞对 ABT737 诱导的死亡的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The inhibition of Beclin1-dependent autophagy sensitizes PTC cells to ABT737-induced death.

ABT737 is used as a specific BCL2 inhibitor, which can treat papillary thyroid carcinoma (PTC). However, the effect of ABT737 on PTC cell apoptosis is limited. Moreover, BCL2 inhibition causes the activation of Beclin1-dependent autophagy. Our study aimed to explore the effects of autophagy and Beclin1 on ABT737 efficacy in PTC. The experimental data showed that ABT737 synchronously enhanced autophagic activity and apoptosis level in PTC cells. ABT737 also promoted the dissociation of BCL2-Beclin1 and BCL2-Bax complexes. Autophagy inhibitors, Bafilomycin A1 and 3-MA, enhanced the inhibitory effect of ABT737 on the survival and function in PTC cells. Consistently, autophagy inhibition with Beclin1 pharmacological inhibitor (spautin-1) also enhanced the efficacy of ABT737. Additionally, ABT737 at low-dose promoted LC3 conversion in PTC cells, and did not affect PTC cell apoptosis and survival. However, The efficacy of low-dose of ABT737 in PTC cell apoptosis and survival was displayed with the addition of Bafilomycin A1, 3-MA or spautin-1. In conclusion, the limited role of ABT737 in PTC cell apoptosis is attributed to its promoting effect on Beclin1-dependent autophagy. Therefore, autophagy inhibition based on Beclin1 downregulation can enhance the sensitivity of PTC cells to ABT737-induced death.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信