Kinga Makk-Merczel, Dóra Varga, Péter Hajdinák, András Szarka
{"title":"药物抗坏血酸、氯喹和白藜芦醇的交错抗癌作用。","authors":"Kinga Makk-Merczel, Dóra Varga, Péter Hajdinák, András Szarka","doi":"10.1002/biof.2050","DOIUrl":null,"url":null,"abstract":"<p>Currently, a diagnosis with KRAS mutant pancreatic ductal adenocarcinoma (PDAC) means a death warrant, so finding efficient therapeutic options is a pressing issue. Here, we presented that pharmacologic ascorbate, chloroquine and resveratrol co-treatment exerted a synergistic cytotoxic effect on PDAC cell lines. The observed synergistic cytotoxicity was a general feature in all investigated cancer cell lines independent of the KRAS mutational status and seems to be independent of the autophagy inhibitory effect of chloroquine. Furthermore, it seems that apoptosis and necroptosis are also not likely to play any role in the cytotoxicity of chloroquine. Both pharmacologic ascorbate and resveratrol caused double-strand DNA breaks accompanied by cell cycle arrest. It seems resveratrol-induced cytotoxicity is independent of reactive oxygen species (ROS) generation and accompanied by a significant elevation of caspase-3/7 activity, while pharmacologic ascorbate-induced cytotoxicity shows strong ROS dependence but proved to be caspase-independent. Our results are particularly important since ascorbate and resveratrol are natural compounds without significant harmful effects on normal cells, and chloroquine is a known antimalarial drug that can easily be repurposed.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biof.2050","citationCount":"0","resultStr":"{\"title\":\"The interlacing anticancer effect of pharmacologic ascorbate, chloroquine, and resveratrol\",\"authors\":\"Kinga Makk-Merczel, Dóra Varga, Péter Hajdinák, András Szarka\",\"doi\":\"10.1002/biof.2050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Currently, a diagnosis with KRAS mutant pancreatic ductal adenocarcinoma (PDAC) means a death warrant, so finding efficient therapeutic options is a pressing issue. Here, we presented that pharmacologic ascorbate, chloroquine and resveratrol co-treatment exerted a synergistic cytotoxic effect on PDAC cell lines. The observed synergistic cytotoxicity was a general feature in all investigated cancer cell lines independent of the KRAS mutational status and seems to be independent of the autophagy inhibitory effect of chloroquine. Furthermore, it seems that apoptosis and necroptosis are also not likely to play any role in the cytotoxicity of chloroquine. Both pharmacologic ascorbate and resveratrol caused double-strand DNA breaks accompanied by cell cycle arrest. It seems resveratrol-induced cytotoxicity is independent of reactive oxygen species (ROS) generation and accompanied by a significant elevation of caspase-3/7 activity, while pharmacologic ascorbate-induced cytotoxicity shows strong ROS dependence but proved to be caspase-independent. Our results are particularly important since ascorbate and resveratrol are natural compounds without significant harmful effects on normal cells, and chloroquine is a known antimalarial drug that can easily be repurposed.</p>\",\"PeriodicalId\":8923,\"journal\":{\"name\":\"BioFactors\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biof.2050\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioFactors\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biof.2050\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biof.2050","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The interlacing anticancer effect of pharmacologic ascorbate, chloroquine, and resveratrol
Currently, a diagnosis with KRAS mutant pancreatic ductal adenocarcinoma (PDAC) means a death warrant, so finding efficient therapeutic options is a pressing issue. Here, we presented that pharmacologic ascorbate, chloroquine and resveratrol co-treatment exerted a synergistic cytotoxic effect on PDAC cell lines. The observed synergistic cytotoxicity was a general feature in all investigated cancer cell lines independent of the KRAS mutational status and seems to be independent of the autophagy inhibitory effect of chloroquine. Furthermore, it seems that apoptosis and necroptosis are also not likely to play any role in the cytotoxicity of chloroquine. Both pharmacologic ascorbate and resveratrol caused double-strand DNA breaks accompanied by cell cycle arrest. It seems resveratrol-induced cytotoxicity is independent of reactive oxygen species (ROS) generation and accompanied by a significant elevation of caspase-3/7 activity, while pharmacologic ascorbate-induced cytotoxicity shows strong ROS dependence but proved to be caspase-independent. Our results are particularly important since ascorbate and resveratrol are natural compounds without significant harmful effects on normal cells, and chloroquine is a known antimalarial drug that can easily be repurposed.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.