Virgil Pasquier, Eric S. Rego, Juliette Dupeyron, Anne-Sophie Bouvier, Thomas Bovay, Martin Robyr, Johanna Marin-Carbonne
{"title":"巴尔马特黄铁矿参考材料的 SIMS 铁同位素测量:非独特的 δ56Fe 特征","authors":"Virgil Pasquier, Eric S. Rego, Juliette Dupeyron, Anne-Sophie Bouvier, Thomas Bovay, Martin Robyr, Johanna Marin-Carbonne","doi":"10.1111/ggr.12549","DOIUrl":null,"url":null,"abstract":"<p><i>In situ</i> iron isotope ratios (δ<sup>56</sup>Fe) in sulfide measured by secondary ion mass spectrometry (SIMS) can provide valuable information on several of Earth's surface processes. SIMS relies on the use of a matrix-matched reference material to correct for instrumental mass fractionation. To date Balmat pyrite has been widely used as a reference material, on the assumption of its homogeneous δ<sup>56</sup>Fe composition. However, several studies have reported divergent bulk δ<sup>56</sup>Fe values, which may jeopardise its use. Here, we combined bulk solution MC-ICP-MS and <i>in situ</i> SIMS δ<sup>56</sup>Fe measurements on two Balmat batches: the Balmat-Original published in Whitehouse and Fedo (2007) and Balmat-UNIL. Despite similar compositions, this study demonstrates the existence of two isotopically distinct Balmat populations. With respect to Balmat-Original (δ<sup>56</sup>Fe = -0.39 ± 0.05‰, 2<i>s</i>), Balmat-UNIL is isotopically 'lighter' with a bulk solution MC-ICP-MS composition of -1.46 ± 0.024‰. Additionally, Balmat-UNIL has two subpopulations: the first is characterised by δ<sup>56</sup>Fe values of -1.46 ± 0.25‰, whereas the second agrees with the original Balmat batch. In each Balmat-UNIL subpopulation, the intra-grain and inter-grain variabilities are sufficient to use Balmat as a reference material for δ<sup>56</sup>Fe isotope measurements by SIMS. This study revealed at least two end-member compositions of Balmat pyrite and calls for a careful batch-specific determination of bulk δ<sup>56</sup>Fe.</p>","PeriodicalId":12631,"journal":{"name":"Geostandards and Geoanalytical Research","volume":"48 2","pages":"423-431"},"PeriodicalIF":2.7000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ggr.12549","citationCount":"0","resultStr":"{\"title\":\"SIMS Iron Isotope Measurements of the Balmat Pyrite Reference Material: A Non-Unique δ56Fe Signature\",\"authors\":\"Virgil Pasquier, Eric S. Rego, Juliette Dupeyron, Anne-Sophie Bouvier, Thomas Bovay, Martin Robyr, Johanna Marin-Carbonne\",\"doi\":\"10.1111/ggr.12549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>In situ</i> iron isotope ratios (δ<sup>56</sup>Fe) in sulfide measured by secondary ion mass spectrometry (SIMS) can provide valuable information on several of Earth's surface processes. SIMS relies on the use of a matrix-matched reference material to correct for instrumental mass fractionation. To date Balmat pyrite has been widely used as a reference material, on the assumption of its homogeneous δ<sup>56</sup>Fe composition. However, several studies have reported divergent bulk δ<sup>56</sup>Fe values, which may jeopardise its use. Here, we combined bulk solution MC-ICP-MS and <i>in situ</i> SIMS δ<sup>56</sup>Fe measurements on two Balmat batches: the Balmat-Original published in Whitehouse and Fedo (2007) and Balmat-UNIL. Despite similar compositions, this study demonstrates the existence of two isotopically distinct Balmat populations. With respect to Balmat-Original (δ<sup>56</sup>Fe = -0.39 ± 0.05‰, 2<i>s</i>), Balmat-UNIL is isotopically 'lighter' with a bulk solution MC-ICP-MS composition of -1.46 ± 0.024‰. Additionally, Balmat-UNIL has two subpopulations: the first is characterised by δ<sup>56</sup>Fe values of -1.46 ± 0.25‰, whereas the second agrees with the original Balmat batch. In each Balmat-UNIL subpopulation, the intra-grain and inter-grain variabilities are sufficient to use Balmat as a reference material for δ<sup>56</sup>Fe isotope measurements by SIMS. This study revealed at least two end-member compositions of Balmat pyrite and calls for a careful batch-specific determination of bulk δ<sup>56</sup>Fe.</p>\",\"PeriodicalId\":12631,\"journal\":{\"name\":\"Geostandards and Geoanalytical Research\",\"volume\":\"48 2\",\"pages\":\"423-431\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ggr.12549\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geostandards and Geoanalytical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12549\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geostandards and Geoanalytical Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12549","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
SIMS Iron Isotope Measurements of the Balmat Pyrite Reference Material: A Non-Unique δ56Fe Signature
In situ iron isotope ratios (δ56Fe) in sulfide measured by secondary ion mass spectrometry (SIMS) can provide valuable information on several of Earth's surface processes. SIMS relies on the use of a matrix-matched reference material to correct for instrumental mass fractionation. To date Balmat pyrite has been widely used as a reference material, on the assumption of its homogeneous δ56Fe composition. However, several studies have reported divergent bulk δ56Fe values, which may jeopardise its use. Here, we combined bulk solution MC-ICP-MS and in situ SIMS δ56Fe measurements on two Balmat batches: the Balmat-Original published in Whitehouse and Fedo (2007) and Balmat-UNIL. Despite similar compositions, this study demonstrates the existence of two isotopically distinct Balmat populations. With respect to Balmat-Original (δ56Fe = -0.39 ± 0.05‰, 2s), Balmat-UNIL is isotopically 'lighter' with a bulk solution MC-ICP-MS composition of -1.46 ± 0.024‰. Additionally, Balmat-UNIL has two subpopulations: the first is characterised by δ56Fe values of -1.46 ± 0.25‰, whereas the second agrees with the original Balmat batch. In each Balmat-UNIL subpopulation, the intra-grain and inter-grain variabilities are sufficient to use Balmat as a reference material for δ56Fe isotope measurements by SIMS. This study revealed at least two end-member compositions of Balmat pyrite and calls for a careful batch-specific determination of bulk δ56Fe.
期刊介绍:
Geostandards & Geoanalytical Research is an international journal dedicated to advancing the science of reference materials, analytical techniques and data quality relevant to the chemical analysis of geological and environmental samples. Papers are accepted for publication following peer review.