{"title":"论环状轨道中的超曲面模量","authors":"Dominic Bunnett","doi":"10.1017/s0013091524000166","DOIUrl":null,"url":null,"abstract":"<p>We construct and study the moduli of stable hypersurfaces in toric orbifolds. Let <span>X</span> be a projective toric orbifold and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313101208614-0171:S0013091524000166:S0013091524000166_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\alpha \\in \\operatorname{Cl}(X)$</span></span></img></span></span> an ample class. The moduli space is constructed as a quotient of the linear system <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313101208614-0171:S0013091524000166:S0013091524000166_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$|\\alpha|$</span></span></img></span></span> by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313101208614-0171:S0013091524000166:S0013091524000166_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$G = \\operatorname{Aut}(X)$</span></span></img></span></span>. Since the group <span>G</span> is non-reductive in general, we use new techniques of non-reductive geometric invariant theory. Using the <span>A</span>-discriminant of Gelfand, Kapranov and Zelevinsky, we prove semistability for quasismooth hypersurfaces of toric orbifolds. Further, we prove the existence of a quasi-projective moduli space of quasismooth hypersurfaces in a weighted projective space when the weighted projective space satisfies a certain condition. We also discuss how to proceed when this condition is not satisfied. We prove that the automorphism group of a quasismooth hypersurface of weighted projective space is finite excluding some low degrees.</p>","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"11 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the moduli of hypersurfaces in toric orbifolds\",\"authors\":\"Dominic Bunnett\",\"doi\":\"10.1017/s0013091524000166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct and study the moduli of stable hypersurfaces in toric orbifolds. Let <span>X</span> be a projective toric orbifold and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313101208614-0171:S0013091524000166:S0013091524000166_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\alpha \\\\in \\\\operatorname{Cl}(X)$</span></span></img></span></span> an ample class. The moduli space is constructed as a quotient of the linear system <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313101208614-0171:S0013091524000166:S0013091524000166_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$|\\\\alpha|$</span></span></img></span></span> by <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313101208614-0171:S0013091524000166:S0013091524000166_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G = \\\\operatorname{Aut}(X)$</span></span></img></span></span>. Since the group <span>G</span> is non-reductive in general, we use new techniques of non-reductive geometric invariant theory. Using the <span>A</span>-discriminant of Gelfand, Kapranov and Zelevinsky, we prove semistability for quasismooth hypersurfaces of toric orbifolds. Further, we prove the existence of a quasi-projective moduli space of quasismooth hypersurfaces in a weighted projective space when the weighted projective space satisfies a certain condition. We also discuss how to proceed when this condition is not satisfied. We prove that the automorphism group of a quasismooth hypersurface of weighted projective space is finite excluding some low degrees.</p>\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000166\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000166","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们构建并研究环状轨道中稳定超曲面的模量。假设 X 是一个投影环状轨道,$\alpha \in\operatorname{Cl}(X)$是一个充裕类。模空间由 $G = \operatorname{Aut}(X)$ 构造为线性系统 $|\alpha|$ 的商。由于群 G 在一般情况下是非还原的,因此我们使用了非还原几何不变理论的新技术。利用格尔芬德、卡普拉诺夫和泽列文斯基的 A-判别式,我们证明了环状轨道的准光滑超曲面的半稳态性。此外,当加权投影空间满足特定条件时,我们证明了在加权投影空间中准光滑超曲面的准投影模空间的存在性。我们还讨论了当这一条件不满足时如何继续。我们证明了加权投影空间准光滑超曲面的自变群是有限的,不包括某些低度。
We construct and study the moduli of stable hypersurfaces in toric orbifolds. Let X be a projective toric orbifold and $\alpha \in \operatorname{Cl}(X)$ an ample class. The moduli space is constructed as a quotient of the linear system $|\alpha|$ by $G = \operatorname{Aut}(X)$. Since the group G is non-reductive in general, we use new techniques of non-reductive geometric invariant theory. Using the A-discriminant of Gelfand, Kapranov and Zelevinsky, we prove semistability for quasismooth hypersurfaces of toric orbifolds. Further, we prove the existence of a quasi-projective moduli space of quasismooth hypersurfaces in a weighted projective space when the weighted projective space satisfies a certain condition. We also discuss how to proceed when this condition is not satisfied. We prove that the automorphism group of a quasismooth hypersurface of weighted projective space is finite excluding some low degrees.
期刊介绍:
The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.