L-内酰胺开环聚合:通过数学建模的多目标优化方法

IF 2.4 3区 化学 Q3 POLYMER SCIENCE
Geetu P. Paul, Virivinti Nagajyothi
{"title":"L-内酰胺开环聚合:通过数学建模的多目标优化方法","authors":"Geetu P. Paul,&nbsp;Virivinti Nagajyothi","doi":"10.1007/s13726-024-01291-z","DOIUrl":null,"url":null,"abstract":"<div><p>As industries move towards sustainable product development, biopolymers such as polylactide are gaining significant attention owing to their self-degradability and eco-friendliness. Therefore, a multi-objective optimization problem (MOOP) formulation to obtain high-performance polylactide concerning physicochemical properties is designed through mathematical modeling and solved using the Elitist Non-dominated Sorting Genetic Algorithm (NSGA II). The current work is focused on improving the polymer growth mechanisms with stannous octoate (catalyst) and 1-dodecanol (co-catalyst) by analyzing three different case studies using optimization approach. In the first study, the Pareto front for batch <i>L</i>-lactide ring-opening polymerization (L-ROP) with objective functions of average molecular weight, polydispersity index, and time is obtained. Further investigations on esterification, chain propagation and the ratio of monomer–catalyst and cocatalyst–catalyst is carried out. The optimized result using certain range of initial reagent concentrations is determined and one of the suitable Pareto optimal solution for case study 1 gives <i>M</i><sub>w</sub> = 610 kDa, PDI = 1.8, time = 100 s; case study 2 is <i>M</i><sub>w</sub> = 560 kDa, λ1/λ0 = 4300, λ0 = 70; case study 3 is <i>M</i><sub>w</sub> = 500 kDa, <i>M</i>/<i>C</i> = 33,800, ROH/C = 8.5. The neighboring optimal solutions in the Pareto front have been classified into 3 groups and the corresponding process parameters for the particular outcome are tabulated. Process modeling and optimization in close vicinity with appropriate experimental data are distinct aspects of this work to apply in industrial plant level.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 6","pages":"815 - 826"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L-Lactide ring-opening polymerization: a multi-objective optimization approach through mathematical modeling\",\"authors\":\"Geetu P. Paul,&nbsp;Virivinti Nagajyothi\",\"doi\":\"10.1007/s13726-024-01291-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As industries move towards sustainable product development, biopolymers such as polylactide are gaining significant attention owing to their self-degradability and eco-friendliness. Therefore, a multi-objective optimization problem (MOOP) formulation to obtain high-performance polylactide concerning physicochemical properties is designed through mathematical modeling and solved using the Elitist Non-dominated Sorting Genetic Algorithm (NSGA II). The current work is focused on improving the polymer growth mechanisms with stannous octoate (catalyst) and 1-dodecanol (co-catalyst) by analyzing three different case studies using optimization approach. In the first study, the Pareto front for batch <i>L</i>-lactide ring-opening polymerization (L-ROP) with objective functions of average molecular weight, polydispersity index, and time is obtained. Further investigations on esterification, chain propagation and the ratio of monomer–catalyst and cocatalyst–catalyst is carried out. The optimized result using certain range of initial reagent concentrations is determined and one of the suitable Pareto optimal solution for case study 1 gives <i>M</i><sub>w</sub> = 610 kDa, PDI = 1.8, time = 100 s; case study 2 is <i>M</i><sub>w</sub> = 560 kDa, λ1/λ0 = 4300, λ0 = 70; case study 3 is <i>M</i><sub>w</sub> = 500 kDa, <i>M</i>/<i>C</i> = 33,800, ROH/C = 8.5. The neighboring optimal solutions in the Pareto front have been classified into 3 groups and the corresponding process parameters for the particular outcome are tabulated. Process modeling and optimization in close vicinity with appropriate experimental data are distinct aspects of this work to apply in industrial plant level.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":601,\"journal\":{\"name\":\"Iranian Polymer Journal\",\"volume\":\"33 6\",\"pages\":\"815 - 826\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13726-024-01291-z\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01291-z","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着工业向可持续产品开发方向发展,聚乳酸等生物聚合物因其可自我降解性和生态友好性而备受关注。因此,我们通过数学建模设计了一个多目标优化问题(MOOP)配方,以获得有关物理化学特性的高性能聚乳酸,并使用菁英非优势排序遗传算法(NSGA II)进行求解。当前工作的重点是利用优化方法,通过分析三个不同的案例研究,改善辛酸亚锡(催化剂)和 1-十二醇(助催化剂)的聚合物生长机制。在第一项研究中,以平均分子量、多分散指数和时间为目标函数,得出了批量 L-内酰胺开环聚合(L-ROP)的帕累托前沿。对酯化、链延伸以及单体-催化剂和共催化剂-催化剂的比例进行了进一步研究。确定了使用一定范围初始试剂浓度的优化结果,案例研究 1 中的一个合适的帕累托最优解为 Mw = 610 kDa,PDI = 1.8,时间 = 100 s;案例研究 2 为 Mw = 560 kDa,λ1/λ0 = 4300,λ0 = 70;案例研究 3 为 Mw = 500 kDa,M/C = 33800,ROH/C = 8.5。帕累托前沿的相邻最优解被分为 3 组,并将特定结果的相应工艺参数列表。工艺建模和近似优化以及适当的实验数据是这项工作的独特方面,可应用于工业设备层面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

L-Lactide ring-opening polymerization: a multi-objective optimization approach through mathematical modeling

L-Lactide ring-opening polymerization: a multi-objective optimization approach through mathematical modeling

L-Lactide ring-opening polymerization: a multi-objective optimization approach through mathematical modeling

As industries move towards sustainable product development, biopolymers such as polylactide are gaining significant attention owing to their self-degradability and eco-friendliness. Therefore, a multi-objective optimization problem (MOOP) formulation to obtain high-performance polylactide concerning physicochemical properties is designed through mathematical modeling and solved using the Elitist Non-dominated Sorting Genetic Algorithm (NSGA II). The current work is focused on improving the polymer growth mechanisms with stannous octoate (catalyst) and 1-dodecanol (co-catalyst) by analyzing three different case studies using optimization approach. In the first study, the Pareto front for batch L-lactide ring-opening polymerization (L-ROP) with objective functions of average molecular weight, polydispersity index, and time is obtained. Further investigations on esterification, chain propagation and the ratio of monomer–catalyst and cocatalyst–catalyst is carried out. The optimized result using certain range of initial reagent concentrations is determined and one of the suitable Pareto optimal solution for case study 1 gives Mw = 610 kDa, PDI = 1.8, time = 100 s; case study 2 is Mw = 560 kDa, λ1/λ0 = 4300, λ0 = 70; case study 3 is Mw = 500 kDa, M/C = 33,800, ROH/C = 8.5. The neighboring optimal solutions in the Pareto front have been classified into 3 groups and the corresponding process parameters for the particular outcome are tabulated. Process modeling and optimization in close vicinity with appropriate experimental data are distinct aspects of this work to apply in industrial plant level.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Polymer Journal
Iranian Polymer Journal 化学-高分子科学
CiteScore
4.90
自引率
9.70%
发文量
107
审稿时长
2.8 months
期刊介绍: Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信