{"title":"基于人机一体化系统五杆机构的下肢主动训练研究与实验","authors":"Jianghong Sun, Fuqing Hu, Keke Gao, Feng Gao, Chao Ma, Junjian Wang","doi":"10.1017/s0263574724000304","DOIUrl":null,"url":null,"abstract":"<p>In view of the fact that the current research on active and passive rehabilitation training of lower limbs is mainly based on the analysis of exoskeleton prototype and the lack of analysis of the actual movement law of limbs, the human-machine coupling dynamic characteristics for active rehabilitation training of lower limbs are studied. In this paper, the forward and inverse kinematics are solved on the basis of innovatively integrating the lower limb and rehabilitation prototype into a human-machine integration system and equivalent to a five-bar mechanism. According to the constraint relationship of hip joint, knee joint and ankle joint, the Lagrange dynamic equation and simulation model of five-bar mechanism under the constraint of human physiological joint motion are constructed, and the simulation problem of closed-loop five-bar mechanism is solved. The joint angle experimental system was built to carry out rehabilitation training experiments to analyze the relationship between lower limb error and height, weight and BMI, and then, a personalized training planning method suitable for people with different lower limb sizes was proposed. The reliability of the method is proved by experiments. Therefore, we can obtain the law of limb movement on the basis of traditional rehabilitation training, appropriately reduce the training speed or reduce the man-machine position distance and reduce the training speed or increase the man-machine distance to reduce the error to obtain the range of motion angle closer to the theory of hip joint and knee joint respectively, so as to achieve better rehabilitation.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"36 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research and experiment on active training of lower limb based on five-bar mechanism of man-machine integration system\",\"authors\":\"Jianghong Sun, Fuqing Hu, Keke Gao, Feng Gao, Chao Ma, Junjian Wang\",\"doi\":\"10.1017/s0263574724000304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In view of the fact that the current research on active and passive rehabilitation training of lower limbs is mainly based on the analysis of exoskeleton prototype and the lack of analysis of the actual movement law of limbs, the human-machine coupling dynamic characteristics for active rehabilitation training of lower limbs are studied. In this paper, the forward and inverse kinematics are solved on the basis of innovatively integrating the lower limb and rehabilitation prototype into a human-machine integration system and equivalent to a five-bar mechanism. According to the constraint relationship of hip joint, knee joint and ankle joint, the Lagrange dynamic equation and simulation model of five-bar mechanism under the constraint of human physiological joint motion are constructed, and the simulation problem of closed-loop five-bar mechanism is solved. The joint angle experimental system was built to carry out rehabilitation training experiments to analyze the relationship between lower limb error and height, weight and BMI, and then, a personalized training planning method suitable for people with different lower limb sizes was proposed. The reliability of the method is proved by experiments. Therefore, we can obtain the law of limb movement on the basis of traditional rehabilitation training, appropriately reduce the training speed or reduce the man-machine position distance and reduce the training speed or increase the man-machine distance to reduce the error to obtain the range of motion angle closer to the theory of hip joint and knee joint respectively, so as to achieve better rehabilitation.</p>\",\"PeriodicalId\":49593,\"journal\":{\"name\":\"Robotica\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0263574724000304\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000304","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
Research and experiment on active training of lower limb based on five-bar mechanism of man-machine integration system
In view of the fact that the current research on active and passive rehabilitation training of lower limbs is mainly based on the analysis of exoskeleton prototype and the lack of analysis of the actual movement law of limbs, the human-machine coupling dynamic characteristics for active rehabilitation training of lower limbs are studied. In this paper, the forward and inverse kinematics are solved on the basis of innovatively integrating the lower limb and rehabilitation prototype into a human-machine integration system and equivalent to a five-bar mechanism. According to the constraint relationship of hip joint, knee joint and ankle joint, the Lagrange dynamic equation and simulation model of five-bar mechanism under the constraint of human physiological joint motion are constructed, and the simulation problem of closed-loop five-bar mechanism is solved. The joint angle experimental system was built to carry out rehabilitation training experiments to analyze the relationship between lower limb error and height, weight and BMI, and then, a personalized training planning method suitable for people with different lower limb sizes was proposed. The reliability of the method is proved by experiments. Therefore, we can obtain the law of limb movement on the basis of traditional rehabilitation training, appropriately reduce the training speed or reduce the man-machine position distance and reduce the training speed or increase the man-machine distance to reduce the error to obtain the range of motion angle closer to the theory of hip joint and knee joint respectively, so as to achieve better rehabilitation.
期刊介绍:
Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.