100 兆电子伏下的三核子系统动力学

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Izabela Skwira-Chalot, Nasser Kalantar-Nayestanaki, Stanisław Kistryn, Adam Kozela, Elżbieta Stephan
{"title":"100 兆电子伏下的三核子系统动力学","authors":"Izabela Skwira-Chalot,&nbsp;Nasser Kalantar-Nayestanaki,&nbsp;Stanisław Kistryn,&nbsp;Adam Kozela,&nbsp;Elżbieta Stephan","doi":"10.1007/s00601-024-01892-7","DOIUrl":null,"url":null,"abstract":"<div><p>Differential cross section for the <span>\\(^1\\)</span>H(d,pp)n deuteron breakup reaction is sensitive to dynamical ingredients such as three-nucleon force or Coulomb force and allows for thorough tests of theoretical potential models describing the interaction in the three nucleon systems. The analysis of the experimental data collected for the breakup reaction at the beam energy of 100 MeV has been performed and the cross section results for selected configurations are presented. They are in good agreement with calculations based on the realistic potentials and state-of-the-art calculations within the Chiral Effective Field Theory framework.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Three-Nucleon Systems at 100 MeV\",\"authors\":\"Izabela Skwira-Chalot,&nbsp;Nasser Kalantar-Nayestanaki,&nbsp;Stanisław Kistryn,&nbsp;Adam Kozela,&nbsp;Elżbieta Stephan\",\"doi\":\"10.1007/s00601-024-01892-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Differential cross section for the <span>\\\\(^1\\\\)</span>H(d,pp)n deuteron breakup reaction is sensitive to dynamical ingredients such as three-nucleon force or Coulomb force and allows for thorough tests of theoretical potential models describing the interaction in the three nucleon systems. The analysis of the experimental data collected for the breakup reaction at the beam energy of 100 MeV has been performed and the cross section results for selected configurations are presented. They are in good agreement with calculations based on the realistic potentials and state-of-the-art calculations within the Chiral Effective Field Theory framework.</p></div>\",\"PeriodicalId\":556,\"journal\":{\"name\":\"Few-Body Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Few-Body Systems\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00601-024-01892-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-024-01892-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

(^1\)H(d,pp)n氘核破裂反应的差分截面对三核力或库仑力等动力学成分很敏感,可以对描述三核子系统中相互作用的理论势能模型进行彻底测试。我们对在 100 兆电子伏特束能下收集到的破裂反应实验数据进行了分析,并给出了选定构型的截面结果。这些结果与基于现实电势的计算结果以及手性有效场理论框架内的最新计算结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamics of Three-Nucleon Systems at 100 MeV

Dynamics of Three-Nucleon Systems at 100 MeV

Differential cross section for the \(^1\)H(d,pp)n deuteron breakup reaction is sensitive to dynamical ingredients such as three-nucleon force or Coulomb force and allows for thorough tests of theoretical potential models describing the interaction in the three nucleon systems. The analysis of the experimental data collected for the breakup reaction at the beam energy of 100 MeV has been performed and the cross section results for selected configurations are presented. They are in good agreement with calculations based on the realistic potentials and state-of-the-art calculations within the Chiral Effective Field Theory framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Few-Body Systems
Few-Body Systems 物理-物理:综合
CiteScore
2.90
自引率
18.80%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures. Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal. The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信