微调掺杂 N 的石墨碳支撑 Co- 和 Fe- 掺杂 Mo2C 的电子结构以实现超高的电化学水氧化活性

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2024-03-13 DOI:10.1002/cey2.488
Md. Selim Arif Sher Shah, Hyeonjung Jung, Vinod K. Paidi, Kug-Seung Lee, Jeong Woo Han, Jong Hyeok Park
{"title":"微调掺杂 N 的石墨碳支撑 Co- 和 Fe- 掺杂 Mo2C 的电子结构以实现超高的电化学水氧化活性","authors":"Md. Selim Arif Sher Shah,&nbsp;Hyeonjung Jung,&nbsp;Vinod K. Paidi,&nbsp;Kug-Seung Lee,&nbsp;Jeong Woo Han,&nbsp;Jong Hyeok Park","doi":"10.1002/cey2.488","DOIUrl":null,"url":null,"abstract":"<p>Mo<sub>2</sub>C is an excellent electrocatalyst for hydrogen evolution reaction (HER). However, Mo<sub>2</sub>C is a poor electrocatalyst for oxygen evolution reaction (OER). Herein, two different elements, namely Co and Fe, are incorporated in Mo<sub>2</sub>C that, therefore, has a finely tuned electronic structure, which is not achievable by incorporation of any one of the metals. Consequently, the resulting electrocatalyst Co<sub>0.8</sub>Fe<sub>0.2</sub>–Mo<sub>2</sub>C-80 displayed excellent OER catalytic performance, which is evidenced by a low overpotential of 214.0 (and 246.5) mV to attain a current density of 10 (and 50) mA cm<sup>−2</sup>, an ultralow Tafel slope of 38.4 mV dec<sup>−1</sup>, and long-term stability in alkaline medium. Theoretical data demonstrates that Co<sub>0.8</sub>Fe<sub>0.2</sub>–Mo<sub>2</sub>C-80 requires the lowest overpotential (1.00 V) for OER and Co centers to be the active sites. The ultrahigh catalytic performance of the electrocatalyst is attributed to the excellent intrinsic catalytic activity due to high Brunauer–Emmett–Teller specific surface area, large electrochemically active surface area, small Tafel slope, and low charge-transfer resistance.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":19.5000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.488","citationCount":"0","resultStr":"{\"title\":\"Fine-tuning electronic structure of N-doped graphitic carbon-supported Co- and Fe-incorporated Mo2C to achieve ultrahigh electrochemical water oxidation activity\",\"authors\":\"Md. Selim Arif Sher Shah,&nbsp;Hyeonjung Jung,&nbsp;Vinod K. Paidi,&nbsp;Kug-Seung Lee,&nbsp;Jeong Woo Han,&nbsp;Jong Hyeok Park\",\"doi\":\"10.1002/cey2.488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mo<sub>2</sub>C is an excellent electrocatalyst for hydrogen evolution reaction (HER). However, Mo<sub>2</sub>C is a poor electrocatalyst for oxygen evolution reaction (OER). Herein, two different elements, namely Co and Fe, are incorporated in Mo<sub>2</sub>C that, therefore, has a finely tuned electronic structure, which is not achievable by incorporation of any one of the metals. Consequently, the resulting electrocatalyst Co<sub>0.8</sub>Fe<sub>0.2</sub>–Mo<sub>2</sub>C-80 displayed excellent OER catalytic performance, which is evidenced by a low overpotential of 214.0 (and 246.5) mV to attain a current density of 10 (and 50) mA cm<sup>−2</sup>, an ultralow Tafel slope of 38.4 mV dec<sup>−1</sup>, and long-term stability in alkaline medium. Theoretical data demonstrates that Co<sub>0.8</sub>Fe<sub>0.2</sub>–Mo<sub>2</sub>C-80 requires the lowest overpotential (1.00 V) for OER and Co centers to be the active sites. The ultrahigh catalytic performance of the electrocatalyst is attributed to the excellent intrinsic catalytic activity due to high Brunauer–Emmett–Teller specific surface area, large electrochemically active surface area, small Tafel slope, and low charge-transfer resistance.</p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.488\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.488\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.488","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Mo2C 是氢进化反应(HER)的极佳电催化剂。然而,Mo2C 在氧进化反应(OER)方面的电催化剂性能较差。在这里,Mo2C 中加入了两种不同的元素,即 Co 和 Fe,因此,Mo2C 具有微调的电子结构,这是加入任何一种金属都无法实现的。因此,所制备的 Co0.8Fe0.2-Mo2C-80 电催化剂显示出卓越的 OER 催化性能,具体表现为:过电位低至 214.0(和 246.5)毫伏,电流密度为 10(和 50)毫安厘米-2;塔菲尔斜率超低,为 38.4 毫伏分-1;在碱性介质中长期稳定。理论数据表明,Co0.8Fe0.2-Mo2C-80 需要最低的过电位(1.00 V)才能使 OER 和 Co 中心成为活性位点。该电催化剂的超高催化性能归功于其优异的内在催化活性,这得益于其较高的布鲁瑙尔-艾美特-泰勒比表面积、较大的电化学活性表面积、较小的塔菲尔斜率和较低的电荷转移电阻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fine-tuning electronic structure of N-doped graphitic carbon-supported Co- and Fe-incorporated Mo2C to achieve ultrahigh electrochemical water oxidation activity

Fine-tuning electronic structure of N-doped graphitic carbon-supported Co- and Fe-incorporated Mo2C to achieve ultrahigh electrochemical water oxidation activity

Fine-tuning electronic structure of N-doped graphitic carbon-supported Co- and Fe-incorporated Mo2C to achieve ultrahigh electrochemical water oxidation activity

Mo2C is an excellent electrocatalyst for hydrogen evolution reaction (HER). However, Mo2C is a poor electrocatalyst for oxygen evolution reaction (OER). Herein, two different elements, namely Co and Fe, are incorporated in Mo2C that, therefore, has a finely tuned electronic structure, which is not achievable by incorporation of any one of the metals. Consequently, the resulting electrocatalyst Co0.8Fe0.2–Mo2C-80 displayed excellent OER catalytic performance, which is evidenced by a low overpotential of 214.0 (and 246.5) mV to attain a current density of 10 (and 50) mA cm−2, an ultralow Tafel slope of 38.4 mV dec−1, and long-term stability in alkaline medium. Theoretical data demonstrates that Co0.8Fe0.2–Mo2C-80 requires the lowest overpotential (1.00 V) for OER and Co centers to be the active sites. The ultrahigh catalytic performance of the electrocatalyst is attributed to the excellent intrinsic catalytic activity due to high Brunauer–Emmett–Teller specific surface area, large electrochemically active surface area, small Tafel slope, and low charge-transfer resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信