平均闭合系数的中心极限定理

IF 0.6 3区 数学 Q3 MATHEMATICS
M. Yuan
{"title":"平均闭合系数的中心极限定理","authors":"M. Yuan","doi":"10.1007/s10474-024-01416-z","DOIUrl":null,"url":null,"abstract":"<div><p>Many real-world networks exhibit the phenomenon of edge clustering,which is typically measured by the average clustering coefficient. Recently,an alternative measure, the average closure coefficient, is proposed to quantify local clustering. It is shown that the average closure coefficient possesses a number of useful properties and can capture complementary information missed by the classical average clustering coefficient. In this paper, we study the asymptotic distribution of the average closure coefficient of a heterogeneous Erdős–Rényi random graph. We prove that the standardized average closure coefficient converges in distribution to the standard normal distribution. In the Erdős–Rényi random graph,the variance of the average closure coefficient exhibits the same phase transition phenomenon as the average clustering coefficient.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"172 2","pages":"543 - 569"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Central limit theorem for the average closure coefficient\",\"authors\":\"M. Yuan\",\"doi\":\"10.1007/s10474-024-01416-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many real-world networks exhibit the phenomenon of edge clustering,which is typically measured by the average clustering coefficient. Recently,an alternative measure, the average closure coefficient, is proposed to quantify local clustering. It is shown that the average closure coefficient possesses a number of useful properties and can capture complementary information missed by the classical average clustering coefficient. In this paper, we study the asymptotic distribution of the average closure coefficient of a heterogeneous Erdős–Rényi random graph. We prove that the standardized average closure coefficient converges in distribution to the standard normal distribution. In the Erdős–Rényi random graph,the variance of the average closure coefficient exhibits the same phase transition phenomenon as the average clustering coefficient.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"172 2\",\"pages\":\"543 - 569\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01416-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01416-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 现实世界中的许多网络都表现出边缘聚类现象,这种现象通常用平均聚类系数来衡量。最近,有人提出了另一种量化局部聚类的方法--平均闭合系数。研究表明,平均闭合系数具有许多有用的特性,可以捕捉经典平均聚类系数所遗漏的补充信息。本文研究了异质厄尔多斯-雷尼随机图的平均闭合系数的渐近分布。我们证明标准化平均闭合系数的分布趋近于标准正态分布。在厄尔多斯-雷尼随机图中,平均闭合系数的方差表现出与平均聚类系数相同的相变现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Central limit theorem for the average closure coefficient

Many real-world networks exhibit the phenomenon of edge clustering,which is typically measured by the average clustering coefficient. Recently,an alternative measure, the average closure coefficient, is proposed to quantify local clustering. It is shown that the average closure coefficient possesses a number of useful properties and can capture complementary information missed by the classical average clustering coefficient. In this paper, we study the asymptotic distribution of the average closure coefficient of a heterogeneous Erdős–Rényi random graph. We prove that the standardized average closure coefficient converges in distribution to the standard normal distribution. In the Erdős–Rényi random graph,the variance of the average closure coefficient exhibits the same phase transition phenomenon as the average clustering coefficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信