{"title":"现实气相合成条件下金纳米粒子凝聚的分子动力学研究","authors":"P. Grammatikopoulos , E. Toulkeridou","doi":"10.1016/j.jaerosci.2024.106356","DOIUrl":null,"url":null,"abstract":"<div><p>Dependence of nanoparticle (NP) coalescence on various physical parameters (e.g., temperature, number of NPs, NP size, orientation, crystallinity, shape, or composition, etc.) is a very active field of investigation. However, most computational studies on NP coalescence to date are performed in vacuum, with only a handful of studies taking gas pressure into account and even fewer doing a systematic analysis. This is due to two reasons: first, many computational studies complement inert-gas condensation experiments, which typically happen at high vacuum. Second, a simulation set-up in vacuum is simpler and computationally less costly. Here we utilised classical molecular dynamics for a rigorous investigation of the effect (or lack of) of gas pressure, as well as of other parameters (namely temperature, angular momenta, and inert-gas species), on the early stages of coalescence between two metallic NPs. Our approach is relevant for both inert-gas condensation in high vacuum and aerosol synthesis in standard atmospheric conditions. Multiple linear regression analysis confirmed temperature as the key factor determining the degree of coalescence; relative angular momenta direction was revealed as yet another important contributor, whereas the effect of pressure was deemed insignificant for early coalescence stages. To shed light onto the sintering process we elaborate on interesting atomistic mechanisms. We aspire that our study may indicate potential strategies for both gas-phase synthesis methods.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"179 ","pages":"Article 106356"},"PeriodicalIF":3.9000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular dynamics investigation of gold nanoparticle coalescence under realistic gas-phase synthesis conditions\",\"authors\":\"P. Grammatikopoulos , E. Toulkeridou\",\"doi\":\"10.1016/j.jaerosci.2024.106356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dependence of nanoparticle (NP) coalescence on various physical parameters (e.g., temperature, number of NPs, NP size, orientation, crystallinity, shape, or composition, etc.) is a very active field of investigation. However, most computational studies on NP coalescence to date are performed in vacuum, with only a handful of studies taking gas pressure into account and even fewer doing a systematic analysis. This is due to two reasons: first, many computational studies complement inert-gas condensation experiments, which typically happen at high vacuum. Second, a simulation set-up in vacuum is simpler and computationally less costly. Here we utilised classical molecular dynamics for a rigorous investigation of the effect (or lack of) of gas pressure, as well as of other parameters (namely temperature, angular momenta, and inert-gas species), on the early stages of coalescence between two metallic NPs. Our approach is relevant for both inert-gas condensation in high vacuum and aerosol synthesis in standard atmospheric conditions. Multiple linear regression analysis confirmed temperature as the key factor determining the degree of coalescence; relative angular momenta direction was revealed as yet another important contributor, whereas the effect of pressure was deemed insignificant for early coalescence stages. To shed light onto the sintering process we elaborate on interesting atomistic mechanisms. We aspire that our study may indicate potential strategies for both gas-phase synthesis methods.</p></div>\",\"PeriodicalId\":14880,\"journal\":{\"name\":\"Journal of Aerosol Science\",\"volume\":\"179 \",\"pages\":\"Article 106356\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerosol Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021850224000235\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021850224000235","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Molecular dynamics investigation of gold nanoparticle coalescence under realistic gas-phase synthesis conditions
Dependence of nanoparticle (NP) coalescence on various physical parameters (e.g., temperature, number of NPs, NP size, orientation, crystallinity, shape, or composition, etc.) is a very active field of investigation. However, most computational studies on NP coalescence to date are performed in vacuum, with only a handful of studies taking gas pressure into account and even fewer doing a systematic analysis. This is due to two reasons: first, many computational studies complement inert-gas condensation experiments, which typically happen at high vacuum. Second, a simulation set-up in vacuum is simpler and computationally less costly. Here we utilised classical molecular dynamics for a rigorous investigation of the effect (or lack of) of gas pressure, as well as of other parameters (namely temperature, angular momenta, and inert-gas species), on the early stages of coalescence between two metallic NPs. Our approach is relevant for both inert-gas condensation in high vacuum and aerosol synthesis in standard atmospheric conditions. Multiple linear regression analysis confirmed temperature as the key factor determining the degree of coalescence; relative angular momenta direction was revealed as yet another important contributor, whereas the effect of pressure was deemed insignificant for early coalescence stages. To shed light onto the sintering process we elaborate on interesting atomistic mechanisms. We aspire that our study may indicate potential strategies for both gas-phase synthesis methods.
期刊介绍:
Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences.
The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics:
1. Fundamental Aerosol Science.
2. Applied Aerosol Science.
3. Instrumentation & Measurement Methods.