多解析贝索夫空间和扩张近似

Pub Date : 2023-11-29 DOI:10.21136/cmj.2023.0347-23
Ali Abkar
{"title":"多解析贝索夫空间和扩张近似","authors":"Ali Abkar","doi":"10.21136/cmj.2023.0347-23","DOIUrl":null,"url":null,"abstract":"<p>Using partial derivatives <i>∂f</i>/<i>∂z</i> and <span>\\(\\partial f/\\partial\\bar{z}\\)</span>, we introduce Besov spaces of polyanalytic functions in the open unit disk, as well as in the upper half-plane. We then prove that the dilatations of functions in certain weighted polyanalytic Besov spaces converge to the same functions in norm. When restricted to the open unit disk, we prove that each polyanalytic function of degree <i>q</i> can be approximated in norm by polyanalytic polynomials of degree at most <i>q</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyanalytic Besov spaces and approximation by dilatations\",\"authors\":\"Ali Abkar\",\"doi\":\"10.21136/cmj.2023.0347-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using partial derivatives <i>∂f</i>/<i>∂z</i> and <span>\\\\(\\\\partial f/\\\\partial\\\\bar{z}\\\\)</span>, we introduce Besov spaces of polyanalytic functions in the open unit disk, as well as in the upper half-plane. We then prove that the dilatations of functions in certain weighted polyanalytic Besov spaces converge to the same functions in norm. When restricted to the open unit disk, we prove that each polyanalytic function of degree <i>q</i> can be approximated in norm by polyanalytic polynomials of degree at most <i>q</i>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/cmj.2023.0347-23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2023.0347-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用偏导数 ∂f/∂z 和 \(\partial f/\partial\bar{z}\), 我们引入了开放单位盘以及上半平面中多解析函数的 Besov 空间。然后我们证明,某些加权多解析 Besov 空间中函数的扩张在规范上收敛于相同的函数。当局限于开放单位盘时,我们证明度数为 q 的每个多解析函数都可以用度数最多为 q 的多项式在规范上逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Polyanalytic Besov spaces and approximation by dilatations

Using partial derivatives ∂f/∂z and \(\partial f/\partial\bar{z}\), we introduce Besov spaces of polyanalytic functions in the open unit disk, as well as in the upper half-plane. We then prove that the dilatations of functions in certain weighted polyanalytic Besov spaces converge to the same functions in norm. When restricted to the open unit disk, we prove that each polyanalytic function of degree q can be approximated in norm by polyanalytic polynomials of degree at most q.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信