重/轻模态空间的等变霍奇多项式

IF 1.2 2区 数学 Q1 MATHEMATICS
Siddarth Kannan, Stefano Serpente, Claudia He Yun
{"title":"重/轻模态空间的等变霍奇多项式","authors":"Siddarth Kannan, Stefano Serpente, Claudia He Yun","doi":"10.1017/fms.2024.20","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313134052190-0722:S2050509424000203:S2050509424000203_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {\\mathcal {M}}_{g, m|n}$</span></span></img></span></span> denote Hassett’s moduli space of weighted pointed stable curves of genus <span>g</span> for the <span>heavy/light</span> weight data <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313134052190-0722:S2050509424000203:S2050509424000203_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$\\begin{align*}\\left(1^{(m)}, 1/n^{(n)}\\right),\\end{align*}$$</span></span></img></span></p><p>and let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313134052190-0722:S2050509424000203:S2050509424000203_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {M}_{g, m|n} \\subset \\overline {\\mathcal {M}}_{g, m|n}$</span></span></img></span></span> be the locus parameterizing smooth, not necessarily distinctly marked curves. We give a change-of-variables formula which computes the generating function for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313134052190-0722:S2050509424000203:S2050509424000203_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$(S_m\\times S_n)$</span></span></img></span></span>-equivariant Hodge–Deligne polynomials of these spaces in terms of the generating functions for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313134052190-0722:S2050509424000203:S2050509424000203_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$S_{n}$</span></span></img></span></span>-equivariant Hodge–Deligne polynomials of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313134052190-0722:S2050509424000203:S2050509424000203_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {\\mathcal {M}}_{g,n}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313134052190-0722:S2050509424000203:S2050509424000203_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {M}_{g,n}$</span></span></img></span></span>.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant Hodge polynomials of heavy/light moduli spaces\",\"authors\":\"Siddarth Kannan, Stefano Serpente, Claudia He Yun\",\"doi\":\"10.1017/fms.2024.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313134052190-0722:S2050509424000203:S2050509424000203_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\overline {\\\\mathcal {M}}_{g, m|n}$</span></span></img></span></span> denote Hassett’s moduli space of weighted pointed stable curves of genus <span>g</span> for the <span>heavy/light</span> weight data <span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313134052190-0722:S2050509424000203:S2050509424000203_eqnu1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$$\\\\begin{align*}\\\\left(1^{(m)}, 1/n^{(n)}\\\\right),\\\\end{align*}$$</span></span></img></span></p><p>and let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313134052190-0722:S2050509424000203:S2050509424000203_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {M}_{g, m|n} \\\\subset \\\\overline {\\\\mathcal {M}}_{g, m|n}$</span></span></img></span></span> be the locus parameterizing smooth, not necessarily distinctly marked curves. We give a change-of-variables formula which computes the generating function for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313134052190-0722:S2050509424000203:S2050509424000203_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(S_m\\\\times S_n)$</span></span></img></span></span>-equivariant Hodge–Deligne polynomials of these spaces in terms of the generating functions for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313134052190-0722:S2050509424000203:S2050509424000203_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S_{n}$</span></span></img></span></span>-equivariant Hodge–Deligne polynomials of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313134052190-0722:S2050509424000203:S2050509424000203_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\overline {\\\\mathcal {M}}_{g,n}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313134052190-0722:S2050509424000203:S2050509424000203_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {M}_{g,n}$</span></span></img></span></span>.</p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.20\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.20","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $overline {\mathcal {M}}_{g, m|n}$ 表示重/轻权数据 $$begin{align*}\left(1^{(m)}, 1/n^{(n)}\right),end{align*}$ 属 g 的加权尖稳定曲线的哈塞特模空间,让 $\mathcal {M}}_{g, m|n}\subset \overline {mathcal {M}}_{g, m|n}$ 是参数化平滑曲线的位置,不一定是有明显标记的曲线。我们给出了一个变量变化公式,用 $overline {\mathcal {M}}_{g,n}$ 和 $\mathcal {M}_{g,n}$ 的生成函数来计算这些空间的 $(S_m\times S_n)$ 平方霍奇-德利尼多项式的生成函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivariant Hodge polynomials of heavy/light moduli spaces

Let $\overline {\mathcal {M}}_{g, m|n}$ denote Hassett’s moduli space of weighted pointed stable curves of genus g for the heavy/light weight data $$\begin{align*}\left(1^{(m)}, 1/n^{(n)}\right),\end{align*}$$

and let $\mathcal {M}_{g, m|n} \subset \overline {\mathcal {M}}_{g, m|n}$ be the locus parameterizing smooth, not necessarily distinctly marked curves. We give a change-of-variables formula which computes the generating function for $(S_m\times S_n)$-equivariant Hodge–Deligne polynomials of these spaces in terms of the generating functions for $S_{n}$-equivariant Hodge–Deligne polynomials of $\overline {\mathcal {M}}_{g,n}$ and $\mathcal {M}_{g,n}$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信