Mohammad Rostamzadeh-Renani , Mohammadreza Baghoolizadeh , S. Mohammad Sajadi , Reza Rostamzadeh-Renani , Narjes Khabazian Azarkhavarani , Soheil Salahshour , Davood Toghraie
{"title":"基于多目标和 CFD 的车顶襟翼几何形状和位置优化,同时减少阻力和升力","authors":"Mohammad Rostamzadeh-Renani , Mohammadreza Baghoolizadeh , S. Mohammad Sajadi , Reza Rostamzadeh-Renani , Narjes Khabazian Azarkhavarani , Soheil Salahshour , Davood Toghraie","doi":"10.1016/j.jppr.2024.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>As the transport sector is responsible for the consumption of a vast proportion of the oil produced, it is mandatory to research feasible solutions to tackle this issue. The application of aerodynamic attachments for passive flow control and reducing resisting aerodynamic forces such as drag and lift is one of the most practicable ways to minimize vehicle energy consumption. The flaps are one of the most innovative aerodynamic attachments that can enhance the flow motion in the boundary layer at the trailing edge of the wings. In the present paper, the flap is designed and modeled for controlling the airflow at the roof-end of a 2D Ahmed body model, inspired by the schematic of the flap at the trailing edge of the wing. As a result, the flap's geometry and position from the roof-end of the car model are parameterized, which leads to having four design variables. The objective functions of the present study are the vehicle's drag coefficient and lift coefficient. 25 Design of Experiment (DOE) points are considered enabling the Box-Behnken method. Then, each DOE point is modeled in the computational domain, and the flow-field around the model is simulated using Ansys Fluent software. The results obtained for the DOE points are employed by different regressors, and the relation between design variables and objective functions is extracted using GMDH-ANN. The GMDH-ANN is then coupled with three types of optimization algorithms, among which the Genetic algorithm proves to have the most ideal coupling process for optimization. Finally, after analyzing the variations in the geometry and position of the roof flap from the car roof-end, the roof-flap with specifications of <em>L</em> = 0.1726 m, <em>α</em> = 5.0875°, <em>H</em> = 0.0188 m, and <em>d</em> = 0.241 m can optimize the car drag and lift coefficients by 21.27% and 19.91%, respectively. The present research discusses the opportunities and challenges of optimal design roof-flap geometry and its influence on car aerodynamic performance.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"13 1","pages":"Pages 26-45"},"PeriodicalIF":5.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212540X24000075/pdfft?md5=dcf02b1e0f26d7b5a5b80048af5b1cfe&pid=1-s2.0-S2212540X24000075-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A multi-objective and CFD based optimization of roof-flap geometry and position for simultaneous drag and lift reduction\",\"authors\":\"Mohammad Rostamzadeh-Renani , Mohammadreza Baghoolizadeh , S. Mohammad Sajadi , Reza Rostamzadeh-Renani , Narjes Khabazian Azarkhavarani , Soheil Salahshour , Davood Toghraie\",\"doi\":\"10.1016/j.jppr.2024.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As the transport sector is responsible for the consumption of a vast proportion of the oil produced, it is mandatory to research feasible solutions to tackle this issue. The application of aerodynamic attachments for passive flow control and reducing resisting aerodynamic forces such as drag and lift is one of the most practicable ways to minimize vehicle energy consumption. The flaps are one of the most innovative aerodynamic attachments that can enhance the flow motion in the boundary layer at the trailing edge of the wings. In the present paper, the flap is designed and modeled for controlling the airflow at the roof-end of a 2D Ahmed body model, inspired by the schematic of the flap at the trailing edge of the wing. As a result, the flap's geometry and position from the roof-end of the car model are parameterized, which leads to having four design variables. The objective functions of the present study are the vehicle's drag coefficient and lift coefficient. 25 Design of Experiment (DOE) points are considered enabling the Box-Behnken method. Then, each DOE point is modeled in the computational domain, and the flow-field around the model is simulated using Ansys Fluent software. The results obtained for the DOE points are employed by different regressors, and the relation between design variables and objective functions is extracted using GMDH-ANN. The GMDH-ANN is then coupled with three types of optimization algorithms, among which the Genetic algorithm proves to have the most ideal coupling process for optimization. Finally, after analyzing the variations in the geometry and position of the roof flap from the car roof-end, the roof-flap with specifications of <em>L</em> = 0.1726 m, <em>α</em> = 5.0875°, <em>H</em> = 0.0188 m, and <em>d</em> = 0.241 m can optimize the car drag and lift coefficients by 21.27% and 19.91%, respectively. The present research discusses the opportunities and challenges of optimal design roof-flap geometry and its influence on car aerodynamic performance.</p></div>\",\"PeriodicalId\":51341,\"journal\":{\"name\":\"Propulsion and Power Research\",\"volume\":\"13 1\",\"pages\":\"Pages 26-45\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212540X24000075/pdfft?md5=dcf02b1e0f26d7b5a5b80048af5b1cfe&pid=1-s2.0-S2212540X24000075-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propulsion and Power Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212540X24000075\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X24000075","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
摘要
由于运输业消耗了大量石油,因此必须研究可行的解决方案来解决这一问题。应用空气动力附件进行被动流量控制,减少阻力和升力等空气动力阻力,是最大限度降低汽车能耗的最可行方法之一。襟翼是最具创新性的空气动力附件之一,可增强机翼后缘边界层的流动运动。本文受机翼后缘襟翼示意图的启发,设计了用于控制二维艾哈迈德车身模型顶端气流的襟翼,并对其进行了建模。因此,襟翼的几何形状和从车顶端开始的位置被参数化,从而产生了四个设计变量。本研究的目标函数是车辆的阻力系数和升力系数。采用 Box-Behnken 方法考虑了 25 个实验设计(DOE)点。然后,在计算域中对每个 DOE 点进行建模,并使用 Ansys Fluent 软件对模型周围的流场进行模拟。对 DOE 点得到的结果采用不同的回归因子,并使用 GMDH-ANN 提取设计变量与目标函数之间的关系。然后将 GMDH-ANN 与三种优化算法耦合,其中遗传算法被证明是最理想的优化耦合过程。最后,在分析了车顶挡板从车顶端开始的几何形状和位置变化后,规格为 = 0.1726 m、= 5.0875°、= 0.0188 m 和 = 0.241 m 的车顶挡板可使汽车阻力系数和升力系数分别优化 21.27% 和 19.91%。本研究探讨了优化设计车顶襟翼几何形状的机遇和挑战及其对汽车空气动力性能的影响。
A multi-objective and CFD based optimization of roof-flap geometry and position for simultaneous drag and lift reduction
As the transport sector is responsible for the consumption of a vast proportion of the oil produced, it is mandatory to research feasible solutions to tackle this issue. The application of aerodynamic attachments for passive flow control and reducing resisting aerodynamic forces such as drag and lift is one of the most practicable ways to minimize vehicle energy consumption. The flaps are one of the most innovative aerodynamic attachments that can enhance the flow motion in the boundary layer at the trailing edge of the wings. In the present paper, the flap is designed and modeled for controlling the airflow at the roof-end of a 2D Ahmed body model, inspired by the schematic of the flap at the trailing edge of the wing. As a result, the flap's geometry and position from the roof-end of the car model are parameterized, which leads to having four design variables. The objective functions of the present study are the vehicle's drag coefficient and lift coefficient. 25 Design of Experiment (DOE) points are considered enabling the Box-Behnken method. Then, each DOE point is modeled in the computational domain, and the flow-field around the model is simulated using Ansys Fluent software. The results obtained for the DOE points are employed by different regressors, and the relation between design variables and objective functions is extracted using GMDH-ANN. The GMDH-ANN is then coupled with three types of optimization algorithms, among which the Genetic algorithm proves to have the most ideal coupling process for optimization. Finally, after analyzing the variations in the geometry and position of the roof flap from the car roof-end, the roof-flap with specifications of L = 0.1726 m, α = 5.0875°, H = 0.0188 m, and d = 0.241 m can optimize the car drag and lift coefficients by 21.27% and 19.91%, respectively. The present research discusses the opportunities and challenges of optimal design roof-flap geometry and its influence on car aerodynamic performance.
期刊介绍:
Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.