Kyle J.-M. Dahlin, Suzanne M. O'Regan, Barbara A. Han, John Paul Schmidt, John M. Drake
{"title":"宿主可用性和温度对蚊媒寄生虫传播的影响","authors":"Kyle J.-M. Dahlin, Suzanne M. O'Regan, Barbara A. Han, John Paul Schmidt, John M. Drake","doi":"10.1002/ecm.1603","DOIUrl":null,"url":null,"abstract":"<p>Global climate change is predicted to cause range shifts in the mosquito species that transmit pathogens to humans and wildlife. Recent modeling studies have sought to improve our understanding of the relationship between temperature and the transmission potential of mosquito-borne pathogens. However, the role of the vertebrate host population, including the importance of host behavioral defenses on mosquito feeding success, remains poorly understood despite ample empirical evidence of its significance to pathogen transmission. Here, we derived thermal performance curves for mosquito and parasite traits and integrated them into two models of vector–host contact to investigate how vertebrate host traits and behaviors affect two key thermal properties of mosquito-borne parasite transmission: the thermal optimum for transmission and the thermal niche of the parasite population. We parameterized these models for five mosquito-borne parasite transmission systems, leading to two main conclusions. First, vertebrate host availability may induce a shift in the thermal optimum of transmission. When the tolerance of the vertebrate host to biting from mosquitoes is limited, the thermal optimum of transmission may be altered by as much as 5°C, a magnitude of applied significance. Second, thresholds for sustained transmission depend nonlinearly on both vertebrate host availability and temperature. At any temperature, sustained transmission is impossible when vertebrate hosts are extremely abundant because the probability of encountering an infected individual is negligible. But when host biting tolerance is limited, sustained transmission will also not occur at low host population densities. Furthermore, our model indicates that biting tolerance should interact with vertebrate host population density to adjust the parasite population thermal niche. Together, these results suggest that vertebrate host traits and behaviors play essential roles in the thermal properties of mosquito-borne parasite transmission. Increasing our understanding of this relationship should lead us to improved predictions about shifting global patterns of mosquito-borne disease.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 2","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1603","citationCount":"0","resultStr":"{\"title\":\"Impacts of host availability and temperature on mosquito-borne parasite transmission\",\"authors\":\"Kyle J.-M. Dahlin, Suzanne M. O'Regan, Barbara A. Han, John Paul Schmidt, John M. Drake\",\"doi\":\"10.1002/ecm.1603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Global climate change is predicted to cause range shifts in the mosquito species that transmit pathogens to humans and wildlife. Recent modeling studies have sought to improve our understanding of the relationship between temperature and the transmission potential of mosquito-borne pathogens. However, the role of the vertebrate host population, including the importance of host behavioral defenses on mosquito feeding success, remains poorly understood despite ample empirical evidence of its significance to pathogen transmission. Here, we derived thermal performance curves for mosquito and parasite traits and integrated them into two models of vector–host contact to investigate how vertebrate host traits and behaviors affect two key thermal properties of mosquito-borne parasite transmission: the thermal optimum for transmission and the thermal niche of the parasite population. We parameterized these models for five mosquito-borne parasite transmission systems, leading to two main conclusions. First, vertebrate host availability may induce a shift in the thermal optimum of transmission. When the tolerance of the vertebrate host to biting from mosquitoes is limited, the thermal optimum of transmission may be altered by as much as 5°C, a magnitude of applied significance. Second, thresholds for sustained transmission depend nonlinearly on both vertebrate host availability and temperature. At any temperature, sustained transmission is impossible when vertebrate hosts are extremely abundant because the probability of encountering an infected individual is negligible. But when host biting tolerance is limited, sustained transmission will also not occur at low host population densities. Furthermore, our model indicates that biting tolerance should interact with vertebrate host population density to adjust the parasite population thermal niche. Together, these results suggest that vertebrate host traits and behaviors play essential roles in the thermal properties of mosquito-borne parasite transmission. Increasing our understanding of this relationship should lead us to improved predictions about shifting global patterns of mosquito-borne disease.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"94 2\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1603\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1603\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1603","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Impacts of host availability and temperature on mosquito-borne parasite transmission
Global climate change is predicted to cause range shifts in the mosquito species that transmit pathogens to humans and wildlife. Recent modeling studies have sought to improve our understanding of the relationship between temperature and the transmission potential of mosquito-borne pathogens. However, the role of the vertebrate host population, including the importance of host behavioral defenses on mosquito feeding success, remains poorly understood despite ample empirical evidence of its significance to pathogen transmission. Here, we derived thermal performance curves for mosquito and parasite traits and integrated them into two models of vector–host contact to investigate how vertebrate host traits and behaviors affect two key thermal properties of mosquito-borne parasite transmission: the thermal optimum for transmission and the thermal niche of the parasite population. We parameterized these models for five mosquito-borne parasite transmission systems, leading to two main conclusions. First, vertebrate host availability may induce a shift in the thermal optimum of transmission. When the tolerance of the vertebrate host to biting from mosquitoes is limited, the thermal optimum of transmission may be altered by as much as 5°C, a magnitude of applied significance. Second, thresholds for sustained transmission depend nonlinearly on both vertebrate host availability and temperature. At any temperature, sustained transmission is impossible when vertebrate hosts are extremely abundant because the probability of encountering an infected individual is negligible. But when host biting tolerance is limited, sustained transmission will also not occur at low host population densities. Furthermore, our model indicates that biting tolerance should interact with vertebrate host population density to adjust the parasite population thermal niche. Together, these results suggest that vertebrate host traits and behaviors play essential roles in the thermal properties of mosquito-borne parasite transmission. Increasing our understanding of this relationship should lead us to improved predictions about shifting global patterns of mosquito-borne disease.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.