Davide Degli Esposti, Lucas E. A. Stehouwer, Önder Gül, Nodar Samkharadze, Corentin Déprez, Marcel Meyer, Ilja N. Meijer, Larysa Tryputen, Saurabh Karwal, Marc Botifoll, Jordi Arbiol, Sergey V. Amitonov, Lieven M. K. Vandersypen, Amir Sammak, Menno Veldhorst, Giordano Scappucci
{"title":"硅中的低无序和高谷分裂","authors":"Davide Degli Esposti, Lucas E. A. Stehouwer, Önder Gül, Nodar Samkharadze, Corentin Déprez, Marcel Meyer, Ilja N. Meijer, Larysa Tryputen, Saurabh Karwal, Marc Botifoll, Jordi Arbiol, Sergey V. Amitonov, Lieven M. K. Vandersypen, Amir Sammak, Menno Veldhorst, Giordano Scappucci","doi":"10.1038/s41534-024-00826-9","DOIUrl":null,"url":null,"abstract":"<p>The electrical characterisation of classical and quantum devices is a critical step in the development cycle of heterogeneous material stacks for semiconductor spin qubits. In the case of silicon, properties such as disorder and energy separation of conduction band valleys are commonly investigated individually upon modifications in selected parameters of the material stack. However, this reductionist approach fails to consider the interdependence between different structural and electronic properties at the danger of optimising one metric at the expense of the others. Here, we achieve a significant improvement in both disorder and valley splitting by taking a co-design approach to the material stack. We demonstrate isotopically purified, strained quantum wells with high mobility of 3.14(8) × 10<sup>5</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> and low percolation density of 6.9(1) × 10<sup>10</sup> cm<sup>−2</sup>. These low disorder quantum wells support quantum dots with low charge noise of 0.9(3) μeV Hz<sup>−1/2</sup> and large mean valley splitting energy of 0.24(7) meV, measured in qubit devices. By striking the delicate balance between disorder, charge noise, and valley splitting, these findings provide a benchmark for silicon as a host semiconductor for quantum dot qubits. We foresee the application of these heterostructures in larger, high-performance quantum processors.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"133 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low disorder and high valley splitting in silicon\",\"authors\":\"Davide Degli Esposti, Lucas E. A. Stehouwer, Önder Gül, Nodar Samkharadze, Corentin Déprez, Marcel Meyer, Ilja N. Meijer, Larysa Tryputen, Saurabh Karwal, Marc Botifoll, Jordi Arbiol, Sergey V. Amitonov, Lieven M. K. Vandersypen, Amir Sammak, Menno Veldhorst, Giordano Scappucci\",\"doi\":\"10.1038/s41534-024-00826-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The electrical characterisation of classical and quantum devices is a critical step in the development cycle of heterogeneous material stacks for semiconductor spin qubits. In the case of silicon, properties such as disorder and energy separation of conduction band valleys are commonly investigated individually upon modifications in selected parameters of the material stack. However, this reductionist approach fails to consider the interdependence between different structural and electronic properties at the danger of optimising one metric at the expense of the others. Here, we achieve a significant improvement in both disorder and valley splitting by taking a co-design approach to the material stack. We demonstrate isotopically purified, strained quantum wells with high mobility of 3.14(8) × 10<sup>5</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> and low percolation density of 6.9(1) × 10<sup>10</sup> cm<sup>−2</sup>. These low disorder quantum wells support quantum dots with low charge noise of 0.9(3) μeV Hz<sup>−1/2</sup> and large mean valley splitting energy of 0.24(7) meV, measured in qubit devices. By striking the delicate balance between disorder, charge noise, and valley splitting, these findings provide a benchmark for silicon as a host semiconductor for quantum dot qubits. We foresee the application of these heterostructures in larger, high-performance quantum processors.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00826-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00826-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
The electrical characterisation of classical and quantum devices is a critical step in the development cycle of heterogeneous material stacks for semiconductor spin qubits. In the case of silicon, properties such as disorder and energy separation of conduction band valleys are commonly investigated individually upon modifications in selected parameters of the material stack. However, this reductionist approach fails to consider the interdependence between different structural and electronic properties at the danger of optimising one metric at the expense of the others. Here, we achieve a significant improvement in both disorder and valley splitting by taking a co-design approach to the material stack. We demonstrate isotopically purified, strained quantum wells with high mobility of 3.14(8) × 105 cm2 V−1 s−1 and low percolation density of 6.9(1) × 1010 cm−2. These low disorder quantum wells support quantum dots with low charge noise of 0.9(3) μeV Hz−1/2 and large mean valley splitting energy of 0.24(7) meV, measured in qubit devices. By striking the delicate balance between disorder, charge noise, and valley splitting, these findings provide a benchmark for silicon as a host semiconductor for quantum dot qubits. We foresee the application of these heterostructures in larger, high-performance quantum processors.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.