硅中的低无序和高谷分裂

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Davide Degli Esposti, Lucas E. A. Stehouwer, Önder Gül, Nodar Samkharadze, Corentin Déprez, Marcel Meyer, Ilja N. Meijer, Larysa Tryputen, Saurabh Karwal, Marc Botifoll, Jordi Arbiol, Sergey V. Amitonov, Lieven M. K. Vandersypen, Amir Sammak, Menno Veldhorst, Giordano Scappucci
{"title":"硅中的低无序和高谷分裂","authors":"Davide Degli Esposti, Lucas E. A. Stehouwer, Önder Gül, Nodar Samkharadze, Corentin Déprez, Marcel Meyer, Ilja N. Meijer, Larysa Tryputen, Saurabh Karwal, Marc Botifoll, Jordi Arbiol, Sergey V. Amitonov, Lieven M. K. Vandersypen, Amir Sammak, Menno Veldhorst, Giordano Scappucci","doi":"10.1038/s41534-024-00826-9","DOIUrl":null,"url":null,"abstract":"<p>The electrical characterisation of classical and quantum devices is a critical step in the development cycle of heterogeneous material stacks for semiconductor spin qubits. In the case of silicon, properties such as disorder and energy separation of conduction band valleys are commonly investigated individually upon modifications in selected parameters of the material stack. However, this reductionist approach fails to consider the interdependence between different structural and electronic properties at the danger of optimising one metric at the expense of the others. Here, we achieve a significant improvement in both disorder and valley splitting by taking a co-design approach to the material stack. We demonstrate isotopically purified, strained quantum wells with high mobility of 3.14(8) × 10<sup>5</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> and low percolation density of 6.9(1) × 10<sup>10</sup> cm<sup>−2</sup>. These low disorder quantum wells support quantum dots with low charge noise of 0.9(3) μeV Hz<sup>−1/2</sup> and large mean valley splitting energy of 0.24(7) meV, measured in qubit devices. By striking the delicate balance between disorder, charge noise, and valley splitting, these findings provide a benchmark for silicon as a host semiconductor for quantum dot qubits. We foresee the application of these heterostructures in larger, high-performance quantum processors.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"133 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low disorder and high valley splitting in silicon\",\"authors\":\"Davide Degli Esposti, Lucas E. A. Stehouwer, Önder Gül, Nodar Samkharadze, Corentin Déprez, Marcel Meyer, Ilja N. Meijer, Larysa Tryputen, Saurabh Karwal, Marc Botifoll, Jordi Arbiol, Sergey V. Amitonov, Lieven M. K. Vandersypen, Amir Sammak, Menno Veldhorst, Giordano Scappucci\",\"doi\":\"10.1038/s41534-024-00826-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The electrical characterisation of classical and quantum devices is a critical step in the development cycle of heterogeneous material stacks for semiconductor spin qubits. In the case of silicon, properties such as disorder and energy separation of conduction band valleys are commonly investigated individually upon modifications in selected parameters of the material stack. However, this reductionist approach fails to consider the interdependence between different structural and electronic properties at the danger of optimising one metric at the expense of the others. Here, we achieve a significant improvement in both disorder and valley splitting by taking a co-design approach to the material stack. We demonstrate isotopically purified, strained quantum wells with high mobility of 3.14(8) × 10<sup>5</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> and low percolation density of 6.9(1) × 10<sup>10</sup> cm<sup>−2</sup>. These low disorder quantum wells support quantum dots with low charge noise of 0.9(3) μeV Hz<sup>−1/2</sup> and large mean valley splitting energy of 0.24(7) meV, measured in qubit devices. By striking the delicate balance between disorder, charge noise, and valley splitting, these findings provide a benchmark for silicon as a host semiconductor for quantum dot qubits. We foresee the application of these heterostructures in larger, high-performance quantum processors.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00826-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00826-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

经典和量子器件的电学特性分析是半导体自旋量子位异质材料堆栈开发周期中的关键一步。就硅而言,通常是在修改材料堆栈的选定参数后单独研究导带谷的无序和能量分离等特性。然而,这种简化方法没有考虑到不同结构和电子特性之间的相互依存关系,有可能在优化一个指标的同时牺牲其他指标。在这里,我们通过对材料堆栈采用协同设计方法,显著改善了无序性和劈谷性。我们展示了同位素纯化的应变量子阱,它具有 3.14(8) × 105 cm2 V-1 s-1 的高迁移率和 6.9(1) × 1010 cm-2 的低渗流密度。这些低无序量子阱支持0.9(3) μeV Hz-1/2的低电荷噪声量子点和0.24(7) meV的大平均谷分裂能(在量子位器件中测量)。通过在无序、电荷噪声和谷分裂之间取得微妙的平衡,这些发现为硅作为量子点量子比特的宿主半导体提供了一个基准。我们预计这些异质结构将应用于更大型、更高性能的量子处理器中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Low disorder and high valley splitting in silicon

Low disorder and high valley splitting in silicon

The electrical characterisation of classical and quantum devices is a critical step in the development cycle of heterogeneous material stacks for semiconductor spin qubits. In the case of silicon, properties such as disorder and energy separation of conduction band valleys are commonly investigated individually upon modifications in selected parameters of the material stack. However, this reductionist approach fails to consider the interdependence between different structural and electronic properties at the danger of optimising one metric at the expense of the others. Here, we achieve a significant improvement in both disorder and valley splitting by taking a co-design approach to the material stack. We demonstrate isotopically purified, strained quantum wells with high mobility of 3.14(8) × 105 cm2 V−1 s−1 and low percolation density of 6.9(1) × 1010 cm−2. These low disorder quantum wells support quantum dots with low charge noise of 0.9(3) μeV Hz−1/2 and large mean valley splitting energy of 0.24(7) meV, measured in qubit devices. By striking the delicate balance between disorder, charge noise, and valley splitting, these findings provide a benchmark for silicon as a host semiconductor for quantum dot qubits. We foresee the application of these heterostructures in larger, high-performance quantum processors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信