辅助二面埃舍尔方格网

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Xiaokang Liu , Lin Lu , Lingxin Cao , Oliver Deussen , Changhe Tu
{"title":"辅助二面埃舍尔方格网","authors":"Xiaokang Liu ,&nbsp;Lin Lu ,&nbsp;Lingxin Cao ,&nbsp;Oliver Deussen ,&nbsp;Changhe Tu","doi":"10.1016/j.gmod.2024.101215","DOIUrl":null,"url":null,"abstract":"<div><p>The auxetic structure demonstrates an unconventional deployable mechanism, expanding in transverse directions while being stretched longitudinally (exhibiting a negative Poisson’s ratio). This characteristic offers advantages in diverse fields such as structural engineering, flexible electronics, and medicine. The rotating (semi-)rigid structure, as a typical auxetic structure, has been introduced into the field of computer-aided design because of its well-defined motion patterns. These structures find application as deployable structures in various endeavors aiming to approximate and rapidly fabricate doubly-curved surfaces, thereby mitigating the challenges associated with their production and transportation. Nevertheless, prior designs relying on basic geometric elements primarily concentrate on exploring the inherent nature of the structure and often lack aesthetic appeal. To address this limitation, we propose a novel design and generation method inspired by dihedral Escher tessellations. By introducing a new metric function, we achieve efficient evaluation of shape deployability as well as filtering of tessellations, followed by a two-step deformation and edge-deployability optimization process to ensure compliance with deployability constraints while preserving semantic meanings. Furthermore, we optimize the shape through physical simulation to guarantee deployability in actual manufacturing and control Poisson’s ratio to a certain extent. Our method yields structures that are both semantically meaningful and aesthetically pleasing, showcasing promising potential for auxetic applications.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"133 ","pages":"Article 101215"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000031/pdfft?md5=ee39dfa2350ffc88d6645119c393baed&pid=1-s2.0-S1524070324000031-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Auxetic dihedral Escher tessellations\",\"authors\":\"Xiaokang Liu ,&nbsp;Lin Lu ,&nbsp;Lingxin Cao ,&nbsp;Oliver Deussen ,&nbsp;Changhe Tu\",\"doi\":\"10.1016/j.gmod.2024.101215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The auxetic structure demonstrates an unconventional deployable mechanism, expanding in transverse directions while being stretched longitudinally (exhibiting a negative Poisson’s ratio). This characteristic offers advantages in diverse fields such as structural engineering, flexible electronics, and medicine. The rotating (semi-)rigid structure, as a typical auxetic structure, has been introduced into the field of computer-aided design because of its well-defined motion patterns. These structures find application as deployable structures in various endeavors aiming to approximate and rapidly fabricate doubly-curved surfaces, thereby mitigating the challenges associated with their production and transportation. Nevertheless, prior designs relying on basic geometric elements primarily concentrate on exploring the inherent nature of the structure and often lack aesthetic appeal. To address this limitation, we propose a novel design and generation method inspired by dihedral Escher tessellations. By introducing a new metric function, we achieve efficient evaluation of shape deployability as well as filtering of tessellations, followed by a two-step deformation and edge-deployability optimization process to ensure compliance with deployability constraints while preserving semantic meanings. Furthermore, we optimize the shape through physical simulation to guarantee deployability in actual manufacturing and control Poisson’s ratio to a certain extent. Our method yields structures that are both semantically meaningful and aesthetically pleasing, showcasing promising potential for auxetic applications.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"133 \",\"pages\":\"Article 101215\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1524070324000031/pdfft?md5=ee39dfa2350ffc88d6645119c393baed&pid=1-s2.0-S1524070324000031-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070324000031\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070324000031","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

这种辅助结构展示了一种非常规的可展开机制,在纵向拉伸的同时横向膨胀(呈现负泊松比)。这一特性在结构工程、柔性电子和医学等多个领域都具有优势。旋转(半)刚性结构是一种典型的辅助结构,由于其运动模式明确,已被引入计算机辅助设计领域。这些结构作为可部署结构应用于各种工作中,旨在近似并快速制造双曲面,从而减轻与生产和运输相关的挑战。尽管如此,以往依靠基本几何元素的设计主要集中在探索结构的固有特性上,往往缺乏美感。针对这一局限性,我们提出了一种新颖的设计和生成方法,其灵感来源于二面埃舍尔方格网。通过引入一个新的度量函数,我们实现了对形状可部署性的高效评估以及对网格的过滤,然后通过两步变形和边缘可部署性优化过程,确保在保留语义的同时符合可部署性约束。此外,我们还通过物理模拟来优化形状,以保证在实际制造中的可部署性,并在一定程度上控制泊松比。我们的方法能产生既有语义意义又美观的结构,为辅助设计应用展示了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auxetic dihedral Escher tessellations

The auxetic structure demonstrates an unconventional deployable mechanism, expanding in transverse directions while being stretched longitudinally (exhibiting a negative Poisson’s ratio). This characteristic offers advantages in diverse fields such as structural engineering, flexible electronics, and medicine. The rotating (semi-)rigid structure, as a typical auxetic structure, has been introduced into the field of computer-aided design because of its well-defined motion patterns. These structures find application as deployable structures in various endeavors aiming to approximate and rapidly fabricate doubly-curved surfaces, thereby mitigating the challenges associated with their production and transportation. Nevertheless, prior designs relying on basic geometric elements primarily concentrate on exploring the inherent nature of the structure and often lack aesthetic appeal. To address this limitation, we propose a novel design and generation method inspired by dihedral Escher tessellations. By introducing a new metric function, we achieve efficient evaluation of shape deployability as well as filtering of tessellations, followed by a two-step deformation and edge-deployability optimization process to ensure compliance with deployability constraints while preserving semantic meanings. Furthermore, we optimize the shape through physical simulation to guarantee deployability in actual manufacturing and control Poisson’s ratio to a certain extent. Our method yields structures that are both semantically meaningful and aesthetically pleasing, showcasing promising potential for auxetic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信