{"title":"母题霍尔条件下的有限匹配性","authors":"Attila Joó","doi":"10.1016/j.jctb.2024.02.006","DOIUrl":null,"url":null,"abstract":"<div><p>Aharoni and Ziv conjectured that if <em>M</em> and <em>N</em> are finitary matroids on <em>E</em>, then a certain “Hall-like” condition is sufficient to guarantee the existence of an <em>M</em>-independent spanning set of <em>N</em>. We show that their condition ensures that every finite subset of <em>E</em> is <em>N</em>-spanned by an <em>M</em>-independent set.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"167 ","pages":"Pages 104-118"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000121/pdfft?md5=545e85909eb190e88b95a350a595c764&pid=1-s2.0-S0095895624000121-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Finite matchability under the matroidal Hall's condition\",\"authors\":\"Attila Joó\",\"doi\":\"10.1016/j.jctb.2024.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aharoni and Ziv conjectured that if <em>M</em> and <em>N</em> are finitary matroids on <em>E</em>, then a certain “Hall-like” condition is sufficient to guarantee the existence of an <em>M</em>-independent spanning set of <em>N</em>. We show that their condition ensures that every finite subset of <em>E</em> is <em>N</em>-spanned by an <em>M</em>-independent set.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"167 \",\"pages\":\"Pages 104-118\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000121/pdfft?md5=545e85909eb190e88b95a350a595c764&pid=1-s2.0-S0095895624000121-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000121\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000121","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Aharoni 和 Ziv 猜想,如果 M 和 N 是 E 上的有限矩阵,那么某个 "类似霍尔 "的条件足以保证 N 存在一个与 M 无关的跨集。
Finite matchability under the matroidal Hall's condition
Aharoni and Ziv conjectured that if M and N are finitary matroids on E, then a certain “Hall-like” condition is sufficient to guarantee the existence of an M-independent spanning set of N. We show that their condition ensures that every finite subset of E is N-spanned by an M-independent set.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.